КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Аннулирующий многочлен
Ортогональная классификация поверхностей второго порядка. Ортогональная классификация кривых второго порядка Приведение квадрики ортогональным преобразованием. Ортогональные инварианты и полуинварианты. Рассмотрим задачу упрощения уравнения квадрики с использованием ортогональным преобразованием системы координат. Отметим, что при ортогональной замене координат сохраняются метрические характеристики. Опишем алгоритм приведения квадрики к простейшему виду ортогональным преобразованием.
Оформим доказанное выше в виде теоремы. Теорема 9.2. Ортогональным преобразованием, сдвигом начала координат и умножением на ненулевое число уравнение квадрики приводится к одному из следующих четырех видов , , , . Обозначим через сумму всех главных миноров k -го порядка матрицы A. Величина является коэффициентом характеристического многочлена при . Пусть квадрика ортогональным преобразованием x = h + Ty приводится к виду , где , , . Поскольку T ортогональная матрица, то , и, значит, , где k= 1,…, n. Кроме того, , и, следовательно, . Тем самым установлен следующий факт. Свойство 9.1 При ортогональном преобразовании не меняются следующие величины , где k= 1,…, n, и , которые называются ортогональными инвариантами квадрики. К сожалению, ортогональные инварианты не всегда позволяют установить простейший тип квадрики. Свойство 9.2. Пусть и , тогда не меняется при ортогональном преобразовании. Доказательство. При ортогональном преобразовании (без сдвига) величины не меняются. Пусть квадратичная форма приводится к главным осям ортогональной заменой координат . Пусть - ортогональное преобразование квадрики. Поскольку , то для доказательства утверждения достаточно рассмотреть случай, когда - диагональная матрица и преобразование заключается в сдвиге на вектор h начала координат. Если , то . В этой матрице единственный минор k порядка, не содержащий нулевых строк, определитель которого не зависит от сдвига. Следовательно, утверждение в данном случае доказано. Пусть , тогда . В этой матрице единственный минор k порядка, не содержащий нулевых строк, определитель которого не зависит от сдвига. Следовательно, утверждение и в данном случае доказано. Величины называются полуинвариантами ортогонального преобразования. Набор инвариантов и полуинвариантов квадрики позволяет однозначно установить простейшее уравнение квадрики. Теорема 9.3. Любая кривая второго порядка ортогонально эквивалентна одному из 9 классов кривых, приведенных в таблице. Приведенные кривые ортогонально не эквивалентны между собой.
Доказательство. очевидно Теорема 9.4 Любая поверхность второго порядка ортогонально эквивалентна одной из поверхностей в одном из 17 классов, приведенных в таблице. Приведенные поверхности ортогонально не эквивалентны между собой.
Доказательство очевидно.
Дата добавления: 2014-01-05; Просмотров: 476; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |