КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Лекция 6. § 133. Эллиптический параболоид
Аналитическая геометрия. Глава 9. Поверхности второго порядка, заданные каноническими уравнениями Определение. Эллиптическим параболоидом назы-вается поверхность, уравнение которой в некоторой специально выбранной прямоугольной системе коор-динат, имеет вид: , (1) где , . Будем считать, что . Если , то эллиптический параболоид (1) является параболоидом вращения, т.к. получается вращением параболы: вокруг оси , являющейся осью параболы. Ось является осью симметрии эллиптического параболоида (1) (она называется осью параболида), а плоскости и - плоскостями симметрии (главные плоскости). Начало координат для эллиптического параболоида (1) является точкой пересечения этой поверхности с её осью и называется вершиной. Плоскость пересекает эллиптический парабо-лоид (1) по линии: , ; или , ; (2) Если , то первое уравнение не имеет действительных решений, т.к. , , это означает, что плоскость при не пересекает эллиптический параболоид (1), Если , то , т.е. плоскость имеет с эллиптическим параболоидом только одну общую точку - вершину . Если , то переписав уравнение (2) в виде: , , видим, что сечением является эллипс с центром в точке и полуосями: и . Плоскость пересекает эллиптический параболоид (1) по параболе , , а плоскость по параболе , . Таким образом, числа и - параметры парабол, получающихся в сечении параболоида плоскостями симметрии (См. рис. 207). Рис. 207. Рис. 208. Рассмотрим сечения эллиптического параболоида плоскостями, параллельными плоскостям , т.е. плоскостями, выражаемыми уравнением . Уравнение линии сечения будет следующим: , , или , , или: , . Эти уравнения выражают параболу с вершиной , ось которой выражается уравнением: , и одинаково направлена с осью . Параметр параболы , равен , т.е. параметру главного сечения эллиптического параболоида плоскостью . Аналогичная картина получается и для сечений эллиптического параболоида (1) плоскостями, параллельными плоскости . Таким образом, эллиптический параболоид может быть образован параллельным переносом параболы по параболе , а оси этих парабол параллельны и одинаково направлены (См. рис. 208). Эллиптический параболоид является образом параболоида вращения при равномерном сжатии пространства: , , к плоскости (коэффициент сжатия ).
Дата добавления: 2014-01-05; Просмотров: 469; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |