КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Отношения между нечеткими множествами
Пусть – непустые множества и предметная область Х – есть декартово произведение Х = . Нечетким n-арным отношением Р, заданным на области определения Х, называется нечеткое множество следующего вида: Р = {(();()):()Х }, (9.13) где (): - функция принадлежности для элементов n -арного отношения Р. Пример. Х = , где = {1;2;3;4;5}; = {1;2;3;4}. На множестве
Х определено нечеткое бинарное отношение с функцией принад- лежности , заданной таблично. Определим явный вид заданного нечеткого бинарного отношения . По определению (9.13) в данном случае следует записать: . Подставляя в полученное выражение данные таблицы находим явный вид: = {(1;2)/0,2;(1;3)/0,13;(1;4)/0,7;(2;1)/0,35;(2;2)/0,1;(3;1)0,2;(4;2)/0,8; (4;3)/0,91;(4;4)/0,45;(5;3)/0,75;(5;4)/0,56}, где принята запись ~ ()/ . Частным случаем нечеткого бинарного отношения является нечеткая импликация, которая определяется следующим образом. Пусть А и В – нечеткие множества, заданные своими функциями принадлежности , на областях определения X, Y. Нечеткая импликация АВ (если А, то В) по Мамдани [10] основана на предположении, что степень истинности заключения не может быть выше, чем степень выполнения условия , т.е.: = min (;) (9.14) Интуитивно такое предположение вполне понятно, например, из следующего правила: ЕСЛИ (автомобиль = новый), ТО (расход топлива = малый). Это правило представляется почти очевидным и, таким образом, нечеткая импликация является основой нечеткого логического вывода.
Дата добавления: 2014-01-05; Просмотров: 331; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |