КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Пример 1.8
Метод деления.
Деление на q (при помощи арифметики основания р). Если представление числа u по основанию q имеет вид (0,U-1U-2… U-n), то можно, используя арифметику основания р, вычислить U-1q-1 + U-2q-2+… +U-nq-n в виде: ((…(U-n/q+ U-n+1)/q+…+ U-2)/q+ U-1)/q Необходимо внимательно следить за ошибками, которые могут появиться в результате усечения или округления при делении на q; ошибки эти обычно пренебрежимы, но не всегда.
Преобразовать дробь (0,1011)2 в десятичную систему счисления. Метод умножения преобразования дробей используется при переходе из “родной” в “чужую” систему счисления, а метод деления – из “чужой” в “родную”.
1.2.3. Перевод чисел с основанием q=pk.
Наиболее прост перевод чисел из q-ичной системы в p-ичную (или обратно), если имеет место соотношение q=pk (k- целое положительное) и обе системы имеют неотрицательные базы. В этом случае перевод из q–ичной системы счисления в p–ичную производят “поразрядно”, заменяя каждую q–ичную цифру равной ей k–разрядным числом, записанным в p–ичной системе счисления. Перевод из p–ичной системы в q–ичную производят при этом следующим образом. Двигая от запятой вправо и влево, разбивают p–ичную запись числа на группы по k цифр. Если при этом самая левая или самая правая группы окажутся неполными, к ним приписывают соответственно слева и справа столько нулей, чтобы каждая из них содержала k цифр. После этого каждую группу p–ичных цифр заменяют одной q–ичной цифрой, равной числу, обозначенному этой группой p–ичных цифр. Большой практический интерес представляет случай, когда p=2 (двоичное основание). В этом случае имеем частный случай двоично-кодированной системы счисления, при которых двоичное число и двоично-кодированное число совпадают. Этот факт используют для более короткой записи двоичных чисел. Обычно берут p=23=8 (восьмеричная система счисления) и p=24=16 (шестнадцатеричная система счисления).
Дата добавления: 2014-01-05; Просмотров: 294; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |