Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Двух шаговый метод наименьших квадратов

 

1. Исходные (неочищенные) регрессоры xj аппроксимируются методом линейных уравнений регрессии от выбранных инструментальных переменных {Zk}, .

 

()

 

Получаем m ЛУМР, причем, независимых друг от друга (метод наименьших квадратов применяется m - раз). Для этого используется классический метод наименьших квадратов. Здесь {} - матрица искомых коэффициентов; j - номер строки этой матрицы, равный номеру исходного регрессора xj; k – номер члена в ЛУМР, равный номеру инструментальной переменной Zk. Классический метод наименьших квадратов используется поочередно для каждого xj.

Замечание. В силу некоррелированности инструмент. переменная Zk с остатками E эти оценки получаются состоятельными метода наименьших квадратов.

 

()

 

()

 

N – число опытов; i – номер опыта;

Z – матрица планирования эксперимента, где базисные функции – линейные функции от Zk.

 

 

Замечание: переменные не коррелируют с ошибками регрессии , поскольку они выражаются в виде линейной комбинации некоррелирующих с E переменных {Zk}.

2. Будем рассматривать { } как новые инструментальные переменные для Y и аппроксимируем Y через них.

 

()

 

Вектор коэффициентов для каждой фиксированной компоненты оцениваем снова с помощью классического метода наименьших квадратов:

 

 

Всего получается таких l формул метода наименьших квадратов вида (); т.е. ; где q - число исходных результативных переменных.

 

3. Поскольку все преобразования линейны, то подставляя () в () получим выражение оценки двухшагового метода наименьших квадратов через исходные (а значит экономически интерпретируемые) инструменты переменной Z j

 

()

 

Оценки [ bjq ]состоятельные

Замечание: Для нелинейного МУР применимость 2х – шаговой процедуры сохраняется, однако связь с получается уже численная.

Вывод: Нужно сделать преобразования переменных перед применением 2х шагов метода наименьших квадратов

 

Пример:

Вводим

Далее 2х –шаговую процедуру можно применять по стандартной схеме к ()

Второй способ для систем одновременных уравнений (СОУ). Построить НСМ с числом нейронов в выходном слое, равном числу компонентов вектора

 

<== предыдущая лекция | следующая лекция ==>
Способ устранения коррелированности регрессоров с остатками с помощью инструментальных переменных | Обобщенный метод наименьших квадратов
Поделиться с друзьями:


Дата добавления: 2014-01-05; Просмотров: 339; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.011 сек.