КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Основные положения планирования производства ремонтных работ
Лекция Витамины(НА ПРАКТИКЕ!!!) представляют собой органические вещества раз личной химической природы и почти исключительно растительного происхождения. Однако, несмотря на большое разнообразие, их объединяют в одну группу благодаря той исключительной роли, которую они играют в обмене веществ. Витамины, действующие в очень малых дозах, совершенно необходимы для нормальной жизнедеятельности как растительных, так и животных организмов. Хотя витамины не являются непосредственными источниками энергий, они вместе с ферментами регулируют энергетические изменения внутри клетки, а многие из них даже входят в состав ферментов. Другим углеводом, заменяющим у некоторых растений крахмал, является и н у л и н. Он образуется в клубнях земляной груши, корнях цикория, одуванчика и вообще характерен для представителей семейства сложноцветные (астровые). Подобно гликогену, инулин растворяется в воде, но под действием спирта выпадает из раствора в виде сферокристаллов. По химическому составу гликоген и инулин близки к крахмалу и имеют одинаковую с ним эмпирическую формулу. Транзиторный крахмал нередко образуется на путях следования сахаров от фотосинтезирующих органов к запасающим. Крахмал окрашивается йодом в синий цвет., медным купоросом и едким калием —в фиолетовый цвет. Он нерастворим в холодной воде, а в горячей набухает, образуя клейстер. Крахмал имеет как питательное вещество, необходимое растениям, животным и человеку, но и как сырье для промышленного производства глюкозы и спирта. Образование крахмального зерна начинается с возникновения в лейкопласте образовательного центра, вокруг которого стромой лейкопласта слоями откладывается вещество крахмала. Слои содержат различное количество воды и имеют различный коэффициент преломления света, благодаря чему они хорошо видны в микроскоп. Если отдельные слои откладываются вокруг образовательного центра равномерно, формируются крахмальные зерна с концентрической слоистостью (злаки, бобовые). Если слой крахмала откладываются вокруг образовательного центра неравномерно, возникают крахмальные зерна с эксцентрической слоистостью (картофель). Различают крахмальные зерна простые, сложные и полусложные. Простые имеют один образовательный центр. Сложные состоят из множества очень мелких простых крахмальных зерен, имеющих каждое свой образовательный центр и слоистость. В состав сложного зерна может входить несколько тысяч простых зерен (шпинат). В полусложных крахмальных зернах — 2 образовательных центра, окруженных общими слоями. Все крахмальные зерна представляют собой сферокристаллы, состоящие из тончайших радиально расположенных игл. Форма и величина крахмальных зерен специфичны для отдельных семейств, родов и даже видов растений. Так, у картофеля они отличаются неправильной.формой, эксцентрической слоистостью и Достигают размера.70... 100 мкм. Крахмальные зерна бобовых значительно мельче, овальные, с концентрической слоистостью, и в центре у них обычно образуется продольная трещина. У риса, овса, гречихи крахмальные зерна сложные, легко распадающиеся на множество простых зернышек неправильной формы. У незеленых растений — бактерий, грибов, а также некото Г е м и ц е л л ю л о з a (CsH804) n встречается в семенах кофейного дерева, финиковой пальмы, многих видов люпина, представителей семейства лилейные и др., накапливаясь в клеточных оболочках. Под действием ферментов гемицеллюлоза, подобно крахмалу и целлюлозе, может превращаться в сахар. Моносахариды и дисахариды встречаются в клетках растений в виде различных сахаров в растворенном состоянии. Моносахариды (СвН12Ое) представлены виноградным сахаром — глюкозой и плодовым сахаром — фруктозой. Эти сахара накапливаются преимущественно в плодах (яблоня, груша, виноград), а также в стеблях (кукуруза, сорго), листьях (лук) и других органах растений.. Дисахариды (С12Н22Ои) встречаются обычно в виде тростникового или свекловичного сахара (сахарозы) и накапливаются в корнеплодах сахарной свеклы, стеблях сахарного тростника, плодах арбуза и других растений. Белки, накапливающиеся в клетках в качестве запасного питательного вещества, необходимо отличать от конституционных живых белков, составляющих основу протопласта. Запасные белки — протеины — являются простыми белками. В отличие от сложных (конституционных) белков они состоят, только из аминокислот. Для запасных белков характерна инертность, в силу которой они с большим трудом вступают в различные реакции. Запасные белки откладываются в форме алейроновых (протеиновых) зерен (в семенах злаков, бобовых) или в виде кристаллоидов (в клубнях картофеля), которые отличаются от настоящих кристаллов способностью к набуханию и окрашиванию. Алейроновые зерна образуются из вакуолей в результате их обезвоживания, что наблюдается при созревании семян. В прорастающих семенах происходит обратный процесс — набухание, и Содержание белка в сельскохозяйственных растениях также весьма различно. Так, в семенах люпина белки составляют 35% от массы сухого вещества, фасоли — 25%, гороха 29%, пшеницы — 12%, кукурузы—10%, картофеля — 8...10%. От йода, белковые зерна окрашиваются в темно-желтый цвет. В горячей воде, кислотах и щелочах запасные белки растворяются почти полностью. Жиры (жирные масла) представляют собой сложные эфиры — соединение жирных кислот с глицерином. Они состоят из тех же химических элементов, что и углеводы, но отличаются от них меньшим содержанием кислорода (С/гН2д02). Запасные жиры широко 3. Продукты распада (к а т а б о л и т ы). Наряду с запасными питательными веществами в клетках растений образуются вещества, которые обычно не участвуют в дальнейших химических процессах и называются катаболитами. Они могут накапливаться в специальных вместилищах или выделяются в окружающую среду. К ним относятся эфирные масла, алкалоиды, гликозиды, дубильные вещества, соли щавелевой кислоты, смолы, каучук и др. Эфирные масла встречаются значительно реже, чем жирные, и характерны только для растений семейств зонтичные (сельдерейные), рутовые, губоцветные (яснотковые) и некоторых других. Обычно эфирные масла обладают летучестью и сильным специфическим запахом. Они встречаются в виде небольших капелек и скапливаются в различных частях растений — корнях, корневищах, листьях, стеблях, плодах и других органах. Эфирные масла защищают растения от поедания животными, многие из них обладают бактерицидными свойствами. Особенно богаты эфирными маслами такие растения, как мята, эвкалипт, роза, тмин, апельсин и некоторые другие. Многие растения (кориандр, мята, герань) возделываются в широких масштабах в качестве эфирномасличных культу]). Эфирные масла широко используются в технике, медицине, парфюмерии, кондитерской и других отраслях промышленности. Алкалоид ы представляют собой азотистые соли органических кислот — яблочной, лимонной, винной и др. Они образуются во всех частях растений — в корнях (белладонна), клубнях (картофель), листьях (табак, чайное дерево), плодах (мак, кофейное дерево), семенах (дурман, люпин, какао) и т. д. В настоящее время известно свыше 1000 различных алкалоидов. Они имеют для растений защитное значение — предохраняют их от поедания животными, иногда играют роль запасных веществ, а также фитогормонов и стимуляторов, вызывающих усиление процессов обмена веществ на тех или иных фазах роста. Народохозяйственное значение алкалоидов и алколоидоносных растений очень велико. Многие алколоиды (никотин, атропин, кокаин, кофеин, хинин и др.)широко применяются в медицине, ветеринарии и сельском хозщяйстве. Гликозиды представляют собой соединения глюкозы со спиртами и другими безазотистыми веществами. Они имеют горький вкус и обладают ядовитыми свойствами, благодаря чему предохраняют растения от поедания животными. Гликозиды многих растений (ландыш, наперстянка и др.) применяются в медицине. Для промышленности большое значение имеют глнкозиды-красители. Соли щавелевой кислоты в растительных клетках чаще всего встречаются в виде щавелевокислого кальция, который образует кристаллический песок, сферокристаллы или кристаллы иной формы в зависимости от вида растений. Различают одиночные кристаллы, встречающиеся в сухих наружных чешуях луковиц репчатого лука и чеснока; друз ы, представляющие собой сростки многочисленных кристаллов звездчатой формы (в плодах жимолости, в коре многих древесных растений), и рафиды — игольчатые кристаллы, часто образующие пучки (в клетках мякоти плодов фуксии, листьев лилии). Все формы, кристаллов локализуются в вакуолях. Благодаря образованию кристаллов щавелевокислого кальция происходит нейтрализация щавелевой кислоты, обладающей ядовитыми свойствами. Кроме щавелевокислого кальция, у некоторых растений (фикус, конопля) образуется у г л е к.и с л ы й кальций, который пропитывает выросты клеточной оболочки, вдающиеся в полость клетки. В результате получаются своеобразные гроздевидные образования — цистолиты. Кристаллы, являясь конечным продуктом обмена веществ в клетке, как правило, тем или иным способом удаляются из организма. Обычно они накапливаются в тех частях растения, которые со временем от него отделяются, — в листьях, плодах, наружных слоях коры. Однако в некоторых случаях кристаллы могут растворяться вновь и участвовать в обмене веществ, как это наблюдается в плодах апельсина и некоторых других растений. Смолы являются комплексными соединениями, образующимися из углеводов в процессе нормальной жизнедеятельности клеток или в результате их разрушения, У одних растений смолы накапливаются в виде капель в клетках, у других выделяются в окружающую среду. Будучи нерастворимыми в воде, смолы не пропускают влагу, они непроницаемы для микроорганизмов, обладают антисептическими свойствами. В практической деятельности человека смолы применяются при изготовлении лаков, смазочных масел, в медицине. Особое значение имеет смола вымерших растений — янтарь. Д у б и л ь н ы е (дубящие) вещества представляют собой сложные органические безазотистые вещества вяжущего вкуса. Они широко распространены среди высших растений, причем особенно богаты ими клетки коры деревьев (дуб, ель, ива), листья чая, семена кофе. Обладая антисептическими свойствами, дубильные вещества защищают растения от поражения различными микроорганизмами, иногда они могут использоваться в качестве запасных питательных веществ.. Дубильные вещества применяются в кожевенной промышленности для дубления кож, а также в медицине как вяжущее средство. 4. Физиологически активные вещества обусловливают нормальную жизнедеятельность клетки и всего организма в целом. Они обладают специфическим действием и неразрывно связаны с метаболизмом клетки. К этим веществам принадлежат ферменты, витамины, фитогормоны, антибиотики, фитонциды и ингибиторы. Все эти вещества вырабатываются протопластом клетки. Ферменты (энзимы) представляют собой сложные вещества белковой природы и являются биологическими катализаторами, присутствие которых необходимо для возбуждения и ускорения биохимических реакций, протекающих в клетке. Важнейшие, жизненные процессы — дыхание, фотосинтез, синтез и распад белков и др. — могут совершаться только под воздействием определенных ферментов. Ферменты отличаются от неорганических катализаторов высокой специфичностью, т. е. действие каждого фермента строго ограничено одним веществом или группой близких веществ. Специфичность действия ферментов является их важнейшим биологическим свойством, без которого невозможен нормальный метаболизм клетки. Активность ферментов зависит от температуры, кислотности среды и от присутствия в окружающей среде различных веществ, усиливающих или подавляющих их каталитическое действие. В настоящее время известно свыше 800 различных ферментов. Начало изучения ферментов относится к 1814 г., когда русский ученый К. С. Кирхгоф показал, что в прорастающем зерне имеется вещество, способное превращать крахмал в сахар. В дальнейших исследованиях ферментов большая роль принадлежит советским ученым А. И. Опарину, А. Л. Курсанову, Н. М. Сисакяну, Б. А. Рубину и другим, впервые начавшим изучать ферменты в живых растениях и заложившим основу биологии ферментов. Важным свойством ферментов является их способность сохранять активность вне живой клетки. На этом свойстве основано применение ферментов в различных отраслях пищевой промышленности — хлебопечении, виноделии, производстве сахара, чая, какао, табака и др. В настоящее время известно несколько десятков различных витаминов, каждый из которых обладает специфическим действием. Так, витамин В3 стимулирует рост корней, витамин С (аскорбиновая кислота) способствует прорастанию семян, регулирует дыхание и т. д. Однако значение витаминов для растений изучено еще недостаточно. Гораздо больше сведений имеется о роли витаминов в жизнедеятельности животных организмов. Отсутствие витаминов в пище животных и человека вызывает тяжелые заболевания. Основоположником учения о витаминах является русский ученый Н. И. Лунин, который еще в 1880 г. доказал необходимость витаминов для нормальной жизнедеятельности животных организмов. В результате дальнейшего изучения витаминов была установлена их химическая природа, что позволило организовать промышленное производство большинства витаминов как из растительного сырья, так и синтетическим путем. Гормоны, вырабатываемые протопластом растительной клетки, получили название ф и т о горм о нов. Они представляют собой группу веществ, способных усиливать различные физиологические процессы — рост, размножение, деление клеток и др. Наиболее изучены в настоящее время гормоны роста — ауксины, впервые исследованные Н. Г. Холодным. Ауксины усиливают доступ кислорода и приток питательных веществ к клеткам, расположенным в растущих частях растения, и таким образом создают оптимальные условия для ростовых процессов. Наряду с ауксином, который вырабатывается клетками высших растений, известны ростовые вещества, вырабатываемые низшими растениями — грибами. К таким веществам относится гиббереллин, выделенный из почвенных грибов Gibberella и Fusarium и обладающий совершенно исключительной и многосторонней физиологической активностью. В настоящее время ростовые вещества получили широкое применение в практике сельского хозяйства. Синтетически получаемый гетероауксин используется для укоренения черенков, для борьбы с опадением бутонов и плодов, для повышения семенной продуктивности растений и т. д. Гиббереллин применяется для получения высокорослых и сильно облиственных растений (соя, табак, конопля), повышения урожая овощных культур (томата, огурца, баклажана) и винограда. С помощью гиббереллинов удается прерывать период покоя у семян, спящих почек, клубней, ускорять цветение и плодоношение, вызывать образование бессемянных плодов. С помощью гиббереллина можно также превращать двулетние растения (морковь, свекла, капуста) в однолетние, плодоносящие в 1-й год жизни. Антибиотики и фитонциды — это особые вещества, которые вырабатываются в клетках растений и имеют для них защитное значение, предохраняя от поражения болезнетворными микроорганизмами и другими паразитами. Принято называть бактерицидные вещества, образующиеся в клетках низших растений (грибов и некоторых бактерий),-антибиотиками, а аналогичные вещества, выделяемые клетками цветковых растений (лука, чеснока, черемухи и др.), - фитонцидами. Основоположником учения о фитонцидах является советский ученый Б. П. Токин. Бактерицидные вещества обладают способностью оказывать губительное действие на различные микроорганизмы, убивая или сильно задерживая рост. Как фитонциды, так и антибиотики действуют избирательно, вследствие чего для одних организмов они весьма токсичны, тогда как для других—совершенно безвредны. Фитонциды некоторых растений обладают настолько сильным действием, что убивают насекомых и даже мелких млекопитающих. В настоящее время многие антибиотики получили широкое применение в медицине в качестве лечебных препаратов для борьбы с тяжелыми инфекционными болезнями. Общеизвестны такие препараты, как пенициллин, стрептомицин, синтомицин и др., получаемые в большом количестве заводским путем. В практике сельского хозяйства начинают применяться фитонцидные препараты для борьбы с различными заболеваниями растений. Так, например, протравливание зерен проса, зараженных пыльной головней, фитонцидами сарептской горчицы повышает урожай проса больше чем в 3 раза. Фитонциды репчатого лука, чеснока, цитрусовых губительно действуют на гриб фитофтору, поражающий картофель. Ингибиторами называют вещества, подавляющие активность ферментов и таким образом способствующие торможению некоторых физиологических процессов, протекающих в растении. Тормозящее действие ингибиторов имеет большое биологическое значение. Благодаря ингибиторам при преждевременном потеплении ранней весной задерживается распускание почек. Ингибиторы обеспечивают период покоя растений, во время которого не происходит прорастания клубней, семян и т. д. 5. Клеточный сок. Как уже отмечалось, растворимые продукты обмена веществ образуют водный раствор, называемый клеточным соком. Он постепенно накапливается в вакуолях, и для взрослой, полностью дифференцированной клетки характерна одна крупная центральная вакуоль, объем которой часто почти равен объему всей клетки. Состав клеточного сока весьма разнообразен и в первую очередь зависит от вида растения. У большинства растений клеточный сок имеет кислую реакцию, исключение составляют огурец, дыня и некоторые другие растения, у которых реакция клеточного сока щелочная. Помимо веществ, рассмотренных выше (растворимые углеводы, белки, алкалоиды и др.), клеточный сок содержит различные кислоты, соли и пигменты. Из органических кислот чаще встречаются яблочная (в плодах яблони, малины, рябины, листьях табака), щавелевая (в листьях щавеля, кислицы, ревеня), винная (в плодах винограда, томата) и лимонная (в плодах лимона, смородины, крыжовника, земляники). К органическим кислотам принадлежит также бензойная кислота, содержащаяся в плодах брусники и клюквы и обладающая способностью предохранять эти растения от различных болезней. Органические кислоты выполняют в клетках растений разнообразные физиологические функции, например участвуют в процессе дыхания. Минеральные соли представлены в клеточном соке нитратами, фосфатами, хлоридами и другими соединениями. Высоким содержанием нитратов отличаются крапива, щирица, картофель, подсолнечник, фасоль. В молодых частях растений обычно накапливаются фосфаты — у лука, чеснока и др. Хлориды характерны для растений, произрастающих на засоленных почвах. Наряду с пигментами пластид у растений известны пигменты клеточного сока, из которых наиболее распространены антоциан и антохлор, относящиеся к гликозидам. Особенностью антоциана является изменение его окраски в зависимости от кислотности среды: в нейтральной среде он фиолетовый, в щелочной — синий и в кислой — красный. Антоциан встречается во всех органах растений — корнях, листьях, цветках, плодах и в зависимости от его концентрации и особенностей организма может давать самые разнообразные окраски — от ярко-красных и синих до почти черных. Часто присутствие антоциана в клетках связано с приспособлением растений к неблагоприятным условиям внешней среды и обеспечивает повышение зимостойкости растений. Антохлор встречается преимущественно в венчиках цветков, которым придает желтую окраску (у льнянки, георгина, коровяка и др.), а также в плодах некоторых цитрусовых. Клеточный сок некоторых растений имеет белую (молочную) окраску, вследствие чего получил название млечного сока. Млечный сок (латекс) вырабатывается многими травянистыми и древесными растениями. Он представляет собой эмульсию или суспензию и содержит до 80 % воды, в которой находятся как запасные питательные вещества (сахара, белки, жиры), так и катаболиты (алкалоиды, гликозиды, смолы, дубильные вещества, а также каучук и гуттаперча). Часто в нем встречаются крахмальные зерна своеобразной формы. У некоторых растений млечный сок имеет, желтую (мак) или оранжевую (чистотел) окраску, что обусловлено присутствием различных пигментов. Млечный сок скапливается в специальных элементах — млечниках. Роль млечного сока в жизни растений отчасти связана с хранением питательных веществ, с защитой от поедания животными, однако значение его еще недостаточно выяснено. Состав, концентрация и вязкость клеточного сока у разных видов растений различны и неодинаковы даже в тканях, органах и клетках одного растения. Далеко не все перечисленные вещества одновременно присутствуют в клеточном соке. Некоторые из них (алкалоиды, гликозиды) характерны только для определенных групп растений, тогда как другие распространены более широко. Нередко в специализированных клетках происходит накопление только какого-либо одного вещества. На состав и свойства клеточного сока большое влияние оказывает возраст клетки и окружающие условия. Вещества клеточного сока могут быть разносторонне использованы, и поэтому он является ценнейшим комплексным сырьем для промышленности. Особенно большое практическое значение имеет млечный сок как источник получения каучука, гуттаперчи, опиума, кодеина и других веществ. Большое количество каучука содержится в млечном соке бразильской гевеи, а также травянистых каучуконосов — кок-сагыза, крым-сагыза и тау-сагыза, произрастающих в РФ. 6. Оболочка растительной клетки. Одной из характерных особенностей растительной клетки является плотная оболочка, которую образует на поверхности клетки протопласт в процессе своей жизнедеятельности. Наличие или отсутствие оболочки служит надежным признаком, который позволяет отличить растительную клетку от животной. Оболочка защищает протопласт от внешних воздействий и придает клетке форму и прочность. Изнутри клеточная оболочка выстлана плазмалеммой. Некоторые клетки растений оболочки не имеют (половые клетки, клетки слизевиков). Клеточные оболочки значительно изменяются в зависимости от возраста и типа клетки. Обычно молодые клетки имеют оболочку более тонкую, чем клетки, полностью сформировавшиеся. Клеточной оболочке свойственна пластичность, т. е. способность принимать и сохранять в дальнейшем новую форму и размеры, а также эластичность, благодаря которой оболочка может восстанавливать прежнюю форму и размеры после деформации. Клеточная оболочка обладает значительной прочностью на растяжение. Строение обо-' лочки тесно связано с функцией клетки. Химический состав и структура оболочки. В состав оболочки чаще всего входят - целлюлоза (клетчатка), гемицеллюлоза (полуклетчатка) и пектиновые вещества. Наибольшее значение и распространение имеет целлюлоза, нередко составляющая до 90% вещества оболочки. Она представляет собой углевод (полисахарид), близкородственный крахмалу, и имеет такую же эмпирическую формулу — (С6Н10О5) п,— но с другим значением коэффициента п и с более сложным молекулярным строением. Молекулы целлюлозы имеют нитчатую структуру и, располагаясь параллельно, группируются в пучки — мицеллы. Мицеллы в свою очередь образуют более крупные структурные элементы — фибриллы, промежутки между которыми заполнены основным веществом оболочки (матриксом), состоящим из пектиновых веществ и гемицеллюлозы. Целлюлоза осахаривается в крепких кислотах, а растворяется только в реактиве Швейцера (аммиачный раствор окиси меди). Гемицеллюлоза также является очень стойким веществом, но поддается разложению несколько легче, чем целлюлоза. Петкиновые вещества в отличие, от целлюлозы и гемицеллюлозы состоят не из нитчатых, а из сильно разветвленных молекул, вследствие чего они обычно аморфны. Особенностью пектиновых веществ является их способность набухать в йоде. Кроме того, пектиновые вещества обладают значительно меньшей прочностью и сравнительно легко разрушаются. У некоторых низших растений оболочка клеток полностью состоит из пектиновых веществ. За л ож е н u е и рост оболочки. В клетке различают первичную и вторичную оболочки. Каждая вновь образовавшаяся клетка сразу окружается очень тонкой прозрачной оболочкой. Эта оболочка является первичной, и в ней преобладают гемицеллюлоза и пектиновые вещества, а также содержится большое количество воды. Формирование первичной оболочки заканчивается, когда клетка достигает своего окончательного размера и перестает расти. Некоторые клетки до конца жизни остаются покрытыми первичной оболочкой. Однако в большинстве случаев после прекращения роста клетки протопласт ее начинает формировать вторичную оболочку, вещество которой откладывается на внутреннюю поверхность первичной оболочки. В состав вторичной оболочки входит главным образом целлюлоза. В ней обычно хорошо заметны слоистость и щтриховатость, обусловленные ее субмикроскопической структурой. Преобладание целлюлозы определяет высокие механические качества вторичной оболочки, особенно ее прочность на растяжение и эластичность. Иногда в клетках различают третичную оболочку в виде тонкого внутреннего слоя, в состав которого входит особое вещество — ксилан. Между первичными оболочками соседних клеток находится прослойка межклеточного пектинового вещества, которая называется срединной пластинкой. Совокупность первичных оболочек двух соседних клеток и заключенной между ними тонкой прослойки межклеточного вещества образует клеточную стенку. Некоторые авторы отождествляют клеточную оболочку с клеточной стенкой, что, по-видимому, не совсем правильно. Разрушение срединной пластинки приводит к разъединению клеток — мацерации. Обособленные, мацерированные, клетки обычно приобретают шаровидную форму, тогда как будучи соединены одна с другой и испытывая взаимное давление, они имеют форму многогранников. Рост клеточной оболочки может осуществляться двумя способами: наложением (обычно изнутри) новых слоев оболочки на старые (аппозиция) и внедрением частиц вещества оболочки между старыми (интуссусцепция). При аппозиции происходит утолщение клеточной оболочки, при интуссусцепции — растяжение и увеличение ее поверхности. Оболочки имеют различную толщину, что обусловлено функцией клетки. Так, у опорных клеток толщина оболочки может достигать 10 мкм. Нередко оболочка настолько утолщается, что занимает всю полость клетки, вследствие чего происходит отмирание протопласта. Иногда наблюдается местное утолщение оболочки — отдельными участками в виде колец, спиралей и т. и. П о р ы и п л а з м о д е с м ы. При формировании первичной оболочки в ней возникают участки, на которых отложение вещества оболочки происходит менее интенсивно. В результате в первичной оболочке появляются многочисленные углубления, получившие название первичных поровых полей. Во вторичной оболочке также имеются участки, на которых вещество оболочки не откладывается, вследствие чего в ней возникают прорывы, достигающие первичной оболочки и называемые порами. Поры двух смежных клеток, как правило, совпадают. Между ними имеется участок тонкой первичной оболочки, называемый замыкающей пленкой поры. Следовательно, полость поры с внутренней стороны непосредственно соединяется с полостью клетки, а с наружной, там, где она соприкасается с соседней клеткой, прикрыта замыкающей пленкой. В клетках с мощно развитой вторичной оболочкой поры превращаются в поровые каналы, идущие от полости клетки до первичной оболочки. Обычно поры образуются непосредственно над первичными поровыми полями, но могут возникать и над другими участками первичной оболочки. Различают 2 типа пор — простые и окаймленные. Упростых пор диаметр порового канала приблизительно одинаков на всем протяжении. У окаймленных пор он резко суживается по мере отложения вторичной оболочки, вследствие чего внутреннее отверстие поры, ведущее в полость клетки, гораздо уже, чем наружное, граничащее с первичной оболочкой. При этом вторичная оболочка в виде валика нависает над расширенной частью канала. Замыкающие пленки пор пронизаны мельчайшими отверстиями в виде канальцев, через которые из одной клетки в другую проходят нити цитоплазмы — плазмодесмы. Ввиду того, что плазмодесмы являются очень тонкими и нежными, увидеть их в световой микроскоп удается не всегда. Однако применение электронного микроскопа позволило обнаружить плазмодесмы почти у всех растений и во всех тканях. Количество плазмодесм в клетке очень велико и у некоторых растений (омела) достигает 6...24 тыс. Плазмодесмы имеют большое биологическое значение. Они связаны с эндоплазматической сетью, а также соединяют протопласты отдельных клеток, обеспечивая непрерывность эндоплазматической сети и всей цитоплазмы организма. С помощью плазмодесм осуществляются проведение различных веществ, передача раздражений из одной клетки в другую и регуляция всех жизненных процессов, протекающих в организме. Плазмодесмы были впервые описаны в 1877 г. русским ученым И. Н. Горожанкиным, а затем Э. Руссоным, Э. Танглем, Э. Страсбургером и другими исследователями. В последнее время нити цитоплазмы были обнаружены также в оболочках клеток, граничащих с внешней средой. Они получили название эк т о д е с м. По-видимому, они играют роль в выделении наружу в поглощении клеткой из внешней среды воды и растворенных в ней веществ. В и д о и з м с н с. н и я клеточной оболочк и. Многие клетки сохраняют целлюлозные оболочки до конца своей жизни. Однако часто в процессе жизнедеятельности протопласта клеточная оболочка подвергается различным изменениям и приобретает новые химические и физические свойства. К числу таких изменений относятся одревеснение, опробковение, кутинизация, минерализация и ослизнение. Одревеснение клеточной оболочки происходит в результате накопления в ней особого вещества — лигнина, который откладывается в промежутках между фибриллами целлюлозы, не вступая с ней в химическое соединение. Лигнин отличается от углеводов более высоким содержанием углерода, его эмпирическая формула С57Нв0О10. Однако химическая природа лигнина окончательно еще не выяснена. Ультраструктура одревесневших оболочек напоминает структуру железобетона, причем микрофибриллы можно сравнить с арматурой, а лигнин играет роль основного вещества. Одревесневшая оболочка теряет эластичность, становится более твердой, хрупкой и приобретает большую прочность на сжатие. Особенно сильное одревеснение клеточных оболочек наблюдается у кустарников и деревьев. При этом клетки могут сохранять живое содержимое, и в них не прекращается обмен веществ. Однако чаще такие клетки отмирают. Лигнин предохраняет клетки высших растений от разрушительного действия бактерий и грибов. В некоторых случаях происходит раздревеснение клеточных оболочек — они теряют лигнин и снова становятся мягкими. Подобное явление можно наблюдать, например, при созревании плодов груши или айвы, сопровождающемся раздревеснением оболочек каменистых клеток. Опробковение заключается в пропитывании оболочки жироподобным веществом — суберином, который делает ее непроницаемой для воды и газов. Суберин не образует скелетные структуры, как это наблюдается при пропитывании оболочки лигнином. Он обычно накладывается изнутри па первичную оболочку в виде тонкого слоя. Вскоре после образования суберинового слоя клетка, будучи изолирована от внешней среды, отмирает и наполняется воздухом, как у пробкового дуба, или в ней накапливаются различные вещества. Кутинизация — это пропитывание клеточных оболочек жироподобным веществом - к у т и и о м, который по своей химической природе близок к суберину. Как правило, кутин пропитывает только ту часть клеточной оболочки, которая непосредственно соприкасается с атмосферой. Часто кутин образует на поверхности клеток непрерывный застывший слой –кутикулу - в виде очень тонкой блестящей пленки. Кутинизация является защитным приспособлением против- слишком интенсивного испарения. Кроме того, кутикула отражает солнечные лучи, что предохраняет растение от перегрева, а иногда защищает листья от ультрафиолетового излучения, поглощая ультрафиолетовые лучи. Ослизнение клеточных оболочек заключается в превращении клетчатки или пектиновых веществ в более высокомолекулярные углеводы — слизи и камеди, способные к сильному набуханию при соприкосновении с водой. Чаще всего ослизнению подвергаются оболочки клеток семенной кожуры у семян льна, тыквы, арбуза и листьев некоторых засухоустойчивых растений. Ослизнение ускоряет прорастание семян, а также предохраняет растения от перегрева. Иногда ослизнение клеточных оболочек и содержимого клеток наблюдается при поранениях. При этом происходит камедетечение (гуммоз), характерное для вишни, сливы и других растений. Минерализация представляет собой отложение минеральных солей (кремнезема, углекислого кальция и др.) в клеточных оболочках стеблей и листьев многих растений — осок, злаков, хвощей. Минерализация повышает прочность оболочки и придает ей особую твердость, защищая растение от поедания животными. Оболочка растительных клеток имеет большое практическое значение и используется в качестве сырья для получения клетчатки, древесины и других веществ, из которых вырабатываются бумага, искусственный шелк, кинопленка, целлофан и др.
При проведении ремонта оборудования ТЭС характерны следующие основные особенности: 1. Динамичность производства ремонтных работ, проявляющаяся в необходимости высокого их темпа, привлечения значительного количества ремонтного персонала на широком фронте параллельно ведущихся работ, непрерывного поступления информации о вновь выявленных дефектах оборудования и изменении объемов (ремонтным работам присущ вероятностный характер планируемого объема работ и строгая определенность сроков выполнения всего комплекса работ). 2. Многочисленность технологических связей и зависимостей между различными работами по ремонту отдельных агрегатов в пределах ремонтируемого оборудования, а также между узлами каждого агрегата. 3. Нестандартность многих ремонтных процессов (каждый ремонт отличается от предыдущего своими объемами и условиями производства работ). 4. Различные ограничения в материальных и людских ресурсах. В период производства работ достаточно часто приходится отвлекать персонал и материальные ресурсы для неотложных нужд действующего производства. 5. Жесткие сроки выполнения ремонтных работ. Все перечисленные особенности ремонта энергетического оборудования приводят к необходимости рационального планирования и управления ходом ремонтных работ, обеспечивающими выполнение основной задачи [35]. Моделирование процессов капитального ремонта позволяет имитировать процесс ремонта оборудования, получать и анализировать соответствующие показатели и на этой основе принимать решения, направленные на оптимизацию объемов и сроков производства работ. Линейная модель — это последовательный (и параллельный, если работы независимы) набор всех работ, который позволяет подсчетом по горизонтали определить продолжительность всего комплекса работ, а подсчетом по вертикали — календарную потребность в персонале, оборудовании и материалах. Получаемый в целом линейный график (рис. 1.5) представляет собой графическую модель решаемой задачи и относится к группе аналоговых моделей. Метод линейного моделирования применяется при ремонте сравнительно несложного оборудования или при производстве небольших объемов работ (например, текущих ремонтов) на сложном оборудовании. Линейные модели не способны отразить основные свойства моделируемой ремонтной системы, так как в них отсутствуют связи, определяющие зависимости одной работы от другой. В случае любого изменения ситуации в ходе производства работ линейная модель перестает отображать реальный ход событий и в нее невозможно внести существенные изменения. В этом случае линейную модель необходимо строить заново. Линейные модели не могут быть использованы в качестве инструмента управления при производстве сложных комплексов работ. Рис. 1.5. Пример линейного графика
Сетевая модель — это особый вид операционной модели, обеспечивающей с любой необходимой точностью детализации отображение состава и взаимосвязи всего комплекса работ во времени. Сетевая модель поддается математическому анализу, позволяет определять реальный календарный план, решать задачи рационального использования ресурсов, оценивать эффективность решений руководителей еще до того, как они будут переданы для исполнения, оценивать фактическое состояние комплекса работ, прогнозировать будущее состояние, своевременно обнаруживать "узкие места" [36]. Составными частями сетевой модели являются сетевой график, представляющий собой графическое отображение технологического процесса ремонта, и информация о ходе ремонтных работ. Основными элементами сетевого графика являются работы (отрезки) и события (кружки). Различаются три вида работ: — действительная работа — работа, требующая затрат времени и ресурсов (трудовых, материальных, энергетических и других); — ожидание — процесс, требующий затрат только времени; — фиктивная работа — зависимость, не требующая затрат времени и ресурсов; фиктивная работа используется для изображения объективно существующих технологических зависимостей между работами. Работа и ожидание в сетевом графике отображаются сплошной стрелкой. Фиктивная работа отображается пунктирной стрелкой. Событие в сетевой модели является результатом выполнения конкретной работы. Например, если рассматривать в качестве работы "устройство лесов", то результатом этой работы будет событие "устройство лесов закончено". Событие может быть простым или сложным, в зависимости от результатов выполнения одной, двух или большего количества входящих работ, а также может не только отражать факты завершения входящих в него работ, но и обусловливать возможность начала одной или нескольких выходящих из него работ. Событие, в отличие от работы, не имеет продолжительности, его характеристикой является время совершения. По месту нахождения и роли в сетевой модели события подразделяются на следующие: — исходное событие, совершение которого означает возможность начала выполнения комплекса работ; оно не имеет ни одной входящей работы; — завершающее событие, совершение которого означает окончание выполнения комплекса работ; оно не имеет ни одной выходящей работы; — промежуточное событие, совершение которого означает окончание всех входящих в него работ и возможность начала выполнения всех выходящих работ. События по отношению к выходящим из них работам называются начальными, а по отношению к входящим работам — конечными. Сетевые модели, имеющие одно завершающее событие, называются одноцелевыми. Основным признаком комплекса ремонтных работ является наличие системы выполнения работ. В связи с этим существует понятие предшествования и непосредственного предшествования. Если работы не связаны между собой условием предшествования, то они являются независимыми (параллельными), поэтому при изображении ремонтного процесса в сетевых моделях последовательно (в цепочке) могут изображаться только работы, связанные между собой условием предшествования. Первичной информацией о ремонтных работах сетевой модели является объем работы, выраженный в натуральных единицах. По объему работ на основании норм может быть определена трудоемкость работы в человеко-часах (чел-ч), а зная оптимальный состав звена, можно определить продолжительность выполнения работы.
Дата добавления: 2014-01-05; Просмотров: 254; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |