КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Инфракрасное излучение
ФИЗИЧЕСКИЕ ЯВЛЕНИЯ, СОПРОВОЖДАЮЩИЕ ПОГЛОЩЕНИЕ СВЕТА ВЕЩЕСТВОМ В начале любого процесса взаимодействия света с веществом находится акт поглощения фотона электроном. Если энергия фотона больше работы выхода электрона из атома, то происходит фотоэффект, который приводит к ионизации атомов и разрывам химических связей между атомами в молекулах. Фотоны с меньшей энергией переводят атомные электроны из основного состояния на более высокие энергетические уровни, что приводит к возбуждению атомов и молекул. Однако атомы и молекулы, как правило, не могут долго находиться в возбужденном состоянии и передают избыточную энергию окружающей среде в одном из следующих процессов. 1. Безызлучательный переход в основное состояние, при ко 2. Фотохимическая реакция, т. е. реакция, обусловленная 3. Люминесценция — переход электронов в основное состояние в молекуле с испусканием одного или последовательно нескольких фотонов.
Инфракрасным (ИК) называют электромагнитное излучение, занимающее область между красной границей видимого света (760 нм) и коротковолновым радиоизлучением (Х=\ — —2 мм). ИК излучение обычно условно разделяют на ближнюю (0,76—2,5 мкм), среднюю (2,5—50 мкм) и дальнюю (50—2000 мкм) области. В соответствии с законом Вина, чем меньше температура нагретого тела, тем на большую длину волны приходится максимум его излучения и тем большая часть спектра находится в инфракрасной области. Так, в спектре излучения Солнца (температура его поверхности —6000 К) на долю ИК излучения приходится около 50% общей энергии, а в спектре излучения ламп накаливания (температура вольфрамовой спирали ~2800 К) —около 90%. При еще меньших температурах видимое излучение вообще отсутствует, и все свечение приходится на ИК область. Например, ИК лучи испускают горячий утюг, тела человека и животных и т. п. Пользуясь законом Вина, можно вычислить температуры, при которых максимум излучения приходится на ИК область: Т = = /Дм, где / = 0,289-10~2 м-К — постоянная Вина. Подставляя сюда значения граничных волн ИК спектра, т. е. liM = 760 нм и Ягм = 2 мм, получаем: Ti = 3800 К и Т2= 1,45 К- Для регистрации и измерения ИК излучения используют приемники двух типов: тепловые и фотоэлектрические (см. гл. II), а также специальные фотоэмульсии. В различных областях науки и народного хозяйства широко применяют инфракрасную фотографию. В зависимости от типа излучателя ИК спектр может быть сплошным или линейчатым. Непрерывный спектр излучают нагретые твердые тела, а линейчатые образуются возбужденными атомами газа. Инфракрасную спектроскопию используют для исследования биологических объектов, в частности живых клеток. Поглощение и отражение ИК излучения различными веществами иные, чем видимого излучения. Вода, прозрачная для видимого света, хорошо поглощает инфракрасные лучи, особенно если в ней растворить немного медного купороса. Поэтому, когда необходимо предупредить нагрев какого-нибудь освещаемого предмета, между ним и источником света помещают кювету с водой. Напротив, если нужно поглотить видимый свет, а инфракрасный пропустить, то берут черные растворы йода в сероуглероде. Обычное стекло не пропускает ИК лучи с длиной волны более 1,5—2 мкм. Непрозрачные для ви- димого света полупроводники прозрачны для ИК лучей. Так, кремний прозрачен для длин волн более 1 мкм. Излучение с длинами волн от 100 мкм до 1 мм хорошо проходит через полиэтилен, полистирол, парафин, и из этих веществ изготавливают приборы для инфракрасной оптики — призмы, линзы и пр. Значительное поглощение ИК излучения водой и ее парами имеет важное значение для теплового баланса нашей планеты. Благодаря сильному поглощению водяными парами земной атмосферы лишь небольшая часть теплового излучения Земли уходит в космическое пространство, и поэтому атмосфера представляет собой своеобразную теплоизолирующую оболочку, препятствующую охлаждению Земли за счет излучения. Аналогичное явление лежит в основе парникового эффекта. Внутренний объем парника и грунт нагреваются светом, проникающим через стеклянные рамы, специальными нагревателями, а также теплом, выделяющимся в результате происходящих в почве биопроцессов. Нагретый грунт испускает ИК излучение, которое поглощается стеклом, превращается опять в теплоту и возвращается в парник. Таким образом, стеклянные рамы предотвращают потери тепла с ИК излучением. В последнее время на смену стеклу приходят полиамидные пленки,, которые в отличие от стекла пропускают внутрь парника не только видимый свет, но и ультрафиолетовое излучение, поглощая вместе с тем ИК лучи. Легкие полиамидные пленки удобнее в применении, чем стекло, и парниковый эффект проявляется сильнее. Большое применение нашли инфракрасные лучи для промышленной сушки разнообразных изделий: свежепокрашенных автомобилей, мебели, пороха, а также фруктов, овощей, влажного зерна. При сушке предметов, пропитанных влагой, ИК лучи поглощаются водой и мало поглощаются самими предметами. Вода испаряется, а предметы почти не нагреваются, а следовательно, не испытывают механических деформаций или химических превращений. БИОЛОГИЧЕСКОЕ ДЕЙСТВИЕ ИК ИЗЛУЧЕНИЯ И ПРИМЕНЕНИЕ ЕГО В ВЕТЕРИНАРИИ Биологическое действие ИК излучения в основном определяется производимым им нагревом тканей. Повышение температуры активизирует деятельность клеток, ускоряет их размножение и обменные процессы. Растения в процессе эволюции выработали способность поглощать лишь необходимые для фотосинтеза участки видимого спектра, и если они живут в условиях солнечного освещения, то не нуждаются в тепловом излучении, которое приводило бы к избыточному нагреву. Поэтому такие растения обладакл способностью отражать ИК часть спектра. Живущие в темноте мхи и водоросли, наоборот, поглощают ИК лучи. Мало того, листья, растущие на свету, отражают гораздо больше ИК излучения, чем листья того же растения, находящиеся в затененных местах. Таким образом, степенью поглощения и отражения ИК излучения растения регулируют в определенных пределах свою температуру. Первичное действие ИК излучения на животное начинается с эффектов, происходящих в коже. Волосяной покров, роговой слой кожи, весь эпидермис прозрачны для ИК излучения, и оно поглощается преимущественно в дерме, но некоторая его часть (25—30%) проникает на глубину до 2,5—4 см, достигая подкожного жирового слоя и даже расположенных под ним органов. Температура тех слоев кожи, в которых излучение поглощается, повышается, что приводит к раздражению содер жащихся в коже рецепторов. В последних возникают потенциалы действия, поступающие в центральную нервную систему, которая управляет механизмом терморегуляции. В результате в месте облучения количество циркулирующей крови возрастает, увеличивается снабжение ткани кислородом, что и ведет к активизации ее биологических функций. Поэтому действие облучения не ограничивается только тем местом, которое подвергалось облучению. Длинноволновое излучение поглощается в верхних слоях тканей, и вызывает в них гиперемию, тогда как более коротковолновое излучение проникает в ткани на глубину до 6—8 см, вызывая прогревание внутренних органов. ИК облучение широко применяют в медицинской и ветеринарной физиотерапии. Его используют при лечении заболеваний кожи, лимфатической системы, суставов (артриты, ревматизм), плевритов, маститов и пр. ИК излучение, сильно поглощаясь водой, усиливает испарение и тем самым оказывает высушивающее действие на влажные поверхности. Это свойств'; находит применение при лечении мокнущих экзем, обмораживании и т. п. Преимущество ИК терапии перед другими тепловыми методами лечения в более глубоком прогревании. Кроме того, отсутствует контакт между источником тепла и органом, чем устраняется раздражение тканей и их загрязнение, что особенно важно при открытых повреждениях. Возможно также ИК облучение через тонкие повязки, так как оно проникает через обычные перевязочные материалы. Большое распространение получили установки для инфракрасного обогрева помещений, в которых находятся сельскохозяйственные животные, особенно молодняк. В ранний постна-тальный период у молодняка еще не стабилизирована физиологическая терморегуляция, и, кроме того, для обсыхания и эндогенного поддержания теплового баланса молодняк должен поглощать больше энергии на единицу массы, чем взрослые животные. Искусственный обогрев тела помогает молодняку быстрее адаптироваться к условиям внешней среды. В промышленных производственных комплексах используют выпускаемые отечественной промышленностью лампы ИКЗК, ИКЗС и др., дающие излучение с длиной волны 1 мкм. В последние годы стали применять галогенные лампы К.ГД, КГТ, КГО и некоторые другие, обладающие более стабильным световым потоком и повышенной светоотдачей. Используют также «темные» источники длинноволнового ИК излучения, представляющие собой металлические трубки, внутри которых находится нагреваемая током проволока, запрессованная в огнеупорное вещество. Такие тепловые электронагреватели (ТЭН) при температуре поверхности около 450 К создают излучение с длинами волн Xv = 4 —5 мкм. Обычная тепловая обработка молока при пастеризации несколько влияет на его химический состав, снижая его вкусовую и биологическую ценность, требует громоздкого оборудования, значительных затрат и времени Обработка молока от ИК источников быстро и практически полностью уничтожает в молоке микрофлору с очень незначительным изменением его вкусовых и пищевых качеств. Следует помнить, что ИК излучение оказывает вредное действие па глаза, поскольку сильно поглощается хрусталиком и стекловидным телом. Оно может приводить к катаракте, отслоению сетчатки и другим заболеваниям глаз, которые наблюдают у пекарей, литейщиков, кузнецов и работников других профессий, имеющих дело с раскаленными телами, испускающими значительное ИК излучение. Поэтому при работе с такими источниками необходимо надевать защитные очки. Исключительно важное значение приобретает в последнее время термография, основанная на регистрации с помощью электронно-оптических преобразователей ИК излучения, испускаемого тканями человека и животных. Поскольку ИК излучение поглощается тканями значительно слабее, чем видимый свет, то оно несет с собой информацию о находящихся под кожей тканях и позволяет видеть детали, неразличимые в видимом свете. Хорошо видны на ИК снимках или на телеэкранах находящиеся близко под кожей вены, так как температура крови немного выше температуры окружающих сосуды тканей, и они создают более интенсивное ИК излучение. Снимки вен позволяют обнаруживать места закупорки сосудов, поскольку очаги воспаления имеют температуру более высокую, чем окружающие ткани. Современные методы регистрации ИК излучения позволяют обнаруживать места локализации тромбов или злокачественных опухолей, даже если их температура превышает окружающую температуру па сотые доли градуса. Изменения, происходящие с нуклеиновыми кислотами, с молекулами ДНК, влияют на процессы жизнедеятельности клеток, на их рост и деление, и могут приводить к гибели клеток и одноклеточных организмов — бактерий. В зависимости от длины волны и от своей структуры, разные бактерии обладают различной чувствительностью к облучению. Так, гибель наибольшего количества стафилококков происходит при длинах волн порядка 265 нм, Н. соП — при 251 им и т. п. Ультрафиолетовые лучи вызывают также разрушение вирусов и бактериофагов, они обезвреживают некоторые бактериальные токсины (например, яд кобры) и ряд других токсичных веществ. Однако для гибели клеток требуется довольно большая доза облучения. Так, для гибели одной клетки Е. colt нужно в среднем 2-106 фотонов. Бактерицидное действие УФ облучения используют для обеззараживания воздуха в закрытых помещениях. Такую санацию воздушной среды применяют в операционных и перевязочных, что резко повышает хирургическую асептику. Бактерицидный эффект УФ облучения широко используют в промышленном птицеводстве, так как из-за высокой концентрации поголовья создается опасность аэрогенных инфекций вследствие микробной загрязненности воздуха в птичниках. Бактерицидное облучение для санации воздушной среды при выращивании цыплят показало, что облучение воздуха 3 раза в день по 5—25 мин приводит к значительному повышению сохранности цыплят и увеличению живой массы по сравнению с цыплятами в контрольных помещениях. Ультрафиолетовому облучению в целях дезинфекции подвергают приточный и вытяжной воздух изоляторов, карантинных и других помещений в животноводческих комплексах. Помимо дезинфицирующего действия, УФ облучение способствует улучшению ионного состава воздуха (увеличивает концентрацию легких аэроионов), снижению количества сероводорода и двуокиси углерода. При работе источников УФ излучения образуется озон, действующий в качество окислителя газовых составляющих вытяжного воздуха животноводческих помещений, обладающих дурным запахом. Действие ультрафиолета на животных начинается с его поглощения в коже. Для того чтобы облучение могло вызвать биологические эффекты, необходимо проникновение его глубже рогового слоя кожи, в зародышевый слой эпидермиса, прилегающий собственно к коже (дерме), в которой проходят кровеносные сосуды и нервы. У человека лучи с длиной, волны менее 300 нм не проникают глубже эпидермиса (— 0,5 мм). У животных с более толстым роговым слоем излучение может и не доходить до эпидермиса, кроме того, ему мешает и воло- Ответная реакция кожи на облучение — пигментация (за-гар). Кожный пигмент меланин сосредоточен в самых нижних слоях эпидермиса. Проникающие в роговой слой лучи с длиной волны 200—250 им вызывают только эритему; излучение с длиной волны 250—270 им проходит через роговой слон, обусловливая пигментацию и эритему; еще более обильную пигментацию и эритему вызывает излучение с длиной волны 270— 320 им, которое проникает до сосудистого слоя и стимулирует работу жировых желез и нервных окончаний. Наконец, излучение с длиной волны 320—390 нм проходит через дерму, приводя к пигментации, чаще без предварительной эритемы. Роль пигментации, как впрочем и механизм пигментации, изучена еще недостаточно. Возможно, что меланин задерживает активные осколки разрушенных молекул, не допуская их попадания в кровь. Действие ультрафиолетового облучения не ограничивается кожей, несмотря на то что оно само в глубь организма не попадает. Продукты фотолиза, распространяясь по капиллярам, раздражают нервные окончания кожи и через центральную нервную систему воздействуют на все органы в той1 или иной степени. Установлено, что в нервах, отходящих от облученных участков кожи, частота электрических импульсов повышается. Действие облучения усиливается, если кожу предварительно смочить водой, облучить высокочастотным электрическим полем или ультразвуком. Это лишний раз указывает на то, что первичное действие ультрафиолетового облучения начинается в коже и сопровождается общим усилением обмена веществ и повышением иммунобиологического состояния организ- ма, а это, в свою очередь, ведет к ускорению процессов рассасывания патологических продуктов и регенерации тканей. Поэтому ультрафиолетовое облучение в ветеринарии применяют при лечении маститов и некоторых других воспалительных процессов. Из других биологических эффектов ультрафиолетового облучения следует отметить образование витамина D, который способствует всасыванию из кишечника и усвоению кальция, входящего в состав костей и выполняющего ряд существенных физиологических функций. При недостатке витамина D кальций, входящий в состав пищи, не усваивается и потребность в нем восполняется за счет кальция костей, а это ведет к рахиту. У больных рахитом детей и молодняка сельскохозяйственных животных нарушается формирование скелета, кости становятся гибкими, дети перестают ходить и расти. Витамин D содержится в мясе и жире животных, однако он может образовываться и в самом организме под действием ультрафиолета с длинами волн от 280 до 315 нм. Облучение молодняка животных и птицы находит широкое применение в промышленном животноводстве. Наиболее эффективно комбинированное облучение ультрафиолетом, инфракрасными лучами и видимым светом. Исследования последних лет показали перспективность уль-^трафиолетовой аутогемотерапии, т. е. облучения крови с целью стимуляции защитных свойств организма животных при различных внутренних болезнях, а также при симптоматическом бесплодии. Кровь для облучения! берут из яремной вены, смешивают с антикоагулянтом, облучают в кварцевых кюветах и вводят обратно в кровеносный сосуд этого же животного. Количество облученной крови рекомендуется брать из расчета 1—2 мл на 1 кг массы животного. Следует отметить и вредное действие УФ облучения, особенно на глаза, поскольку слизистая оболочка глаза (конъюнктива) не имеет защитного рогового слоя, и поэтому глаз более чувствителен к ультрафиолету, чем кожа. Ультрафиолетовые лучи, достигая хрусталика, при определенных дозах вызывают его помутнение — катаракту. Поэтому все работы с ультрафиолетом необходимо проводить в защитных очках.
Дата добавления: 2014-01-05; Просмотров: 8752; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |