КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Определение начальных условий при переходе от описания системы в макроподходе к описанию системы в микроподходе
Пример определения передаточной функции. Рассмотрим обыкновенное дифференциальное уравнение второго порядка . Пусть . Тогда . . Получаем: - передаточная функция; при - частотная характеристика.
При переходе в микроподход необходимо определить начальные условия для переменных состояния, которые соответствуют начальным условиям, заданным при описании системы линейным дифференциальным уравнением: . Мы должны установить однозначное соответствие между этими начальными условиями и вектором начальных условий для переменных состояния (только для простоты выкладок положим ): . Для решения этой задачи воспользуемся уравнением выхода, в котором сохраним только общее решение однородного уравнения и в которое подставлено решение уравнения состояния : . В этом решении есть искомый вектор начальных условий для переменных состояния. Итак, после подстановки в уравнение выхода получим: . Напомним, что - есть фундаментальная матрица системы, задаваемая соотношением: . Нам потребуются производные этой матрицы: ;; . Заметим, что при , где E – есть единичная матрица. Поэтому ;; . Если теперь в решении последовательно определить производные и положить , то получим: . (*) Легко заметить, что полученная конструкция представляет собой систему линейных алгебраических уравнений (СЛАУ) относительно элементов вектора . Таким образом, при поиске начальных условий для вектора переменных состояния по начальным условиям линейного дифференциального уравнения n - порядка необходимо решить СЛАУ вида (*)
Пример. При n=2 имеем: В скалярной форме система уравнений примет вид:
Дата добавления: 2014-01-05; Просмотров: 437; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |