Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Теплота. Способы передачи теплоты




Лекция 7

Помимо макрофизической формы пе­редачи энергии — работы существует также и микрофизическая, т. е. осуще­ствляемая на молекулярном уровне фор­ма обмена энергией между системой и окружающей средой. В этом случае энергия может быть передана системе без совершения работы. Мерой количест­ва энергии, переданной микрофизиче­ским путем, служит теплота.

Теплота и работа — это энергетические характеристики процес­сов механического и теплового взаи­модействий системы с окружающей средой. Они характеризуют те количест­ва энергии, которые переданы системе или отданы ею через ее границы в опре­деленном процессе.

Элементарное количество теплоты dQ = CdT, где С – теплоемкость тела, dT – малое изменение температуры тела. Измеряется теплота в единицах энергии: Дж, кал. Теплоемкость - количество теплоты, необходимое для нагрева тела на dT. Согласно второму закону термо­динамики самопроизвольный про­цесс переноса теплоты в простран­стве возникает под действием раз­ности температур и направлен в сторону уменьшения температуры. Закономерности переноса теплоты и количественные характеристики этого процесса являются предметом исследования теории теплообмена (теплопередачи).

Закономерности переноса теплоты и количественные характеристики этого процесса являются предметом исследо­вания теории теплообмена (теплопере­дачи).

Теплота может распространяться в любых веществах и даже через вакуум (пустоту). Идеальных теплоизоляторов не существует.

Во всех веществах теплота передает­ся теплопроводностью за счет пе­реноса энергии микрочастицами. Моле­кулы, атомы, электроны и другие микро­частицы, из которых состоит вещество, движутся со скоростями, пропорциональ­ными их температуре. За счет взаимодей­ствия друг с другом быстродвижущиеся микрочастицы отдают свою энергию бо­лее медленным, перенося таким образом теплоту из зоны с высокой в зону с более низкой температурой

В жидкостях перенос теплоты может осуществляться еще и за счет перемеши­вания. При этом уже не отдельные моле­кулы, а большие, макроскопические объемы горячей жидкости перемещаются в зоны с низкими температурами, а хо­лодная жидкость попадает в зоны с вы­сокими температурами. Перенос теплоты вместе с макроскопическими объемами вещества носит название конвектив­ного теплопереноса, или просто конвекции.

Следует иметь в виду, что одновре­менно с конвекцией всегда сосуществует и теплопроводность, однако конвектив­ный перенос в жидкостях обычно являет­ся определяющим, поскольку он значи­тельно интенсивнее теплопроводности.

В твердых монолитных телах переме­щение макроскопических объемов отно­сительно друг друга невозможно, поэтому теплота переносится в них только теплопроводностью. Однако при нагреве, сушке зернистых материалов (песка, зерна и т. д.) очень часто искусственно организуют перемешивание. Процесс теплопереноса при этом резко интенси­фицируется и физически становится по­хожим на конвективный теплоперенос в жидкостях.

Часто приходится рассчитывать теп­лообмен между жидкостью и поверхностью твердого тела. Этот процесс получил специальное название конвективная теплоотдача (теплота отдается от жидкости к поверхности или наоборот).

Третьим способом переноса теплоты является излучение. Излучением теп­лота передается через все лучепрозрачные среды, в том числе и через вакуум, например в космосе, где это единственно возможный способ получения теплоты от Солнца и потери ее в межзвездное про­странство. Носителями энергии при теп­лообмене излучением являются фотоны, излучаемые и поглощаемые телами, уча­ствующими в теплообмене.

В большинстве случаев перенос теп­лоты осуществляется несколькими спосо­бами одновременно, хотя часто одним или даже двумя способами пренебрегают ввиду их относительно небольшого вкла­да в суммарный сложный теплоперенос/




Поделиться с друзьями:


Дата добавления: 2014-01-05; Просмотров: 602; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.008 сек.