КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Равномерное вращение сосуда с жидкостью
Возьмем открытый цилиндрический сосуд с жидкостью и сообщим ему вращение с постоянной угловой скоростью w вокруг его вертикальной оси. Жидкость постепенно приобретет ту же угловую скорость, что и сосуд, а свободная поверхностьее видоизменится; в центральной части уровень жидкости понизится, у стенок — повысится, и вся свободная поверхность жидкости станет некоторой поверхностью вращения (рис. 1.18). На жидкость в этом случае будут действовать две массовые силы — сила тяжести и центробежная сила, которые, будучи отнесенными к единице массы, соответственно равны g и . Равнодействующая массовая сила j увеличивается с увеличением радиуса за счет второй составляющей, а угол наклона ее к горизонту уменьшается. Эта сила нормальна к свободной поверхности жидкости, поэтому наклон этой поверхности с увеличением радиуса возрастает. Найдем уравнение кривой АОВ в системе координат z и r с началом в центре дна сосуда. Учитывая, что сила j является нормалью к кривой АОВ, из чертежа находим откуда или после интегрирования В точке пересечения кривой АОВ с осью вращения r = 0, z = h= C, поэтому окончательно будем иметь (1.34) т. е. кривая АОВ является параболой, а свободная поверхность жидкости — параболоидом. Такую же форму имеют и другие поверхности уровня. Пользуясь уравнением (1.34), можно определить положение свободной поверхности в сосуде, например максимальную высоту Н подъема жидкости и высоту h расположения вершины параболоида при данной угловой скорости w. Для этого необходимо использовать еще уравнение объемов: объем неподвижной жидкости равен ее объему во время вращения.
Рис. 1.18. Поверхность жидкости при вращении открытого cосуда вокруг вертикальной оси
Для определения закона изменения давления во вращающейся жидкости в функции радиуса и высоты поступим аналогично тому, как это сделано в п. 1.5. Выделим вертикальный цилиндрический объем жидкости с основанием в виде элементарной горизонтальной площадки dS (точка М) на произвольном радиусе r и высоте z и запишем условие его равновесия в вертикальном направлении. С учетом уравнения (1.34) будем иметь После сокращений получим (1.35)
Это значит, что давление возрастает пропорционально радиусу и уменьшается пропорционально высоте z. Если сосуд, вращающийся вокруг вертикальной оси, имеет крышку и заполнен жидкостью доверху, то ее форма измениться не может, но изменяется давление в соответствии с выражением (1.35). На рис. 1.19 показана эпюра давления по крышке, стенке и дну сосуда.
Рис. 1.19. Эпюры давлений на крышку,
Дата добавления: 2014-01-05; Просмотров: 2630; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |