Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Методы прямого поиска

J

I

X

Y

X

 

2. Идет построение в плоскости х1 и х2. Берут точку – определяющую значение аргумента. Находят точку в которой функция имеет тоже самое значение, в результате получаем линию в которой функция имеет постоянное значение – изолиния (линия уровня).

  х2     х2     х1 х1 - изолиния     z  
 
 


изолиния

       
   
 
 

 

 


Вектор grad составляет прямой угол с изолинией.

Вернемся к формуле:

 

 

Квадратичная аппроксимация (или квадратичное приращение)

 

Линейное отображение:

- линейное отображение, если:

1. свойство аддитивности - ;

2. свойство однородности -

 

Линейное отображение можно задать матрицей:

 

т

; ;

п - основная формула

 

 

1
 
 


 

 
 


 

 

 

 

отображение

2 задачи:

- решение системы уравнений

и обратное отображение – найти х

А-1 – обратное отображение;

следовательно строки матрицы ортогональны столбцам

другой матрицы

- нахождение собственных значений

 

Используя матрицу можно найти более сложную функцию: - квадратичная форма.

- функция нескольких переменных .

 

Рассмотрим подробнее.

Есть матрица:

- квадратичная форма

 

А и А/ определяют одну и ту же квадратичную форму следовательно значения этой формы не однозначно. Если по заданной квадратичной форме найдем симметрию, то она будет однозначная.

;

;

Без ограничения общности можно считать, что матрица определяющая квадратичную форму является симметричной.

 

Вернемся к квадратичной форме:

Рассмотрим функцию 2-го порядка:

 

Допустим, что , матрица диагональная.

1.  
      Эллипсы         Эллиптический парабалоид    
    2.  
   
3.  
        Гиперболы     Седло  

Допустим, что . Тогда вся картина просто повернется на некоторый угол по оси Z.

 

Рассмотрим п -мерный случай.

Квадратичная форма называется положительно определенной областью если она не отрицательная.

  1. , причем обращается в ноль, в том случае если х = 0 (). Этот случай соответствует эллиптическому параболоиду.
  2. , .
  3. Знаконеопределенность.

соответствует п -мерному эллиптическому гиперболоиду (п -мерное седло)

 

Рассмотрим 2-мерное пространство:

 
 

 

Если квадратная матрица называется положительно определенной, то и матрица положительно определенной.  

Рассмотрим разложение функции 2-х переменных в ряд Тейлора:

квадратичная матрица задается матрицей Н

 

матрица составленная из членов 2-го порядка

 

- матрица симметрична

 

Матрица Н – матрица Гесса.

 

- определение матрицы Гесса

 

Если матрица (матрица Гесса) в точке локального экстремума положительно определена, то это точка – локального минимума, если матрица отрицательно определена, то это точка – локального максимума, а если не определена – седловые точки.

 

 

Локальный max или min

 

 

Седловая точка

 

Минимизируем:

Найти частные производные:

1. (grad = 0);

2.

 

Эта система позволяет найти все точки экстремума:

 

  те х1 и х2 которые удовлетворяют уравнениям и будет точками экстремума.

 

Допустим, что . Надо составить функцию второго порядка и подставить и посмотреть их.

 

Необходимые условия – помогают охарактеризовать искомую точку:

  1. grad f = 0

 

Н ³ 0 – локальный минимум;

Н £ 0 – локальный максимум;

Н – не определена – седловая точка.

 

Для поиска используют численные методы.

 

Постановка:

Требуется , где х – вектор - т.к. нет ограничений задача безусловной оптимизации.

Есть черный ящик, который по заданным значениям х позволяет вычислить значение функции.

 

 

 

      Должны задать начальное приближение точки х0; - некоторое приближение полученное после к – итераций; вычислить значение точки в окрестности точки ; Из данных точек выбрать точку в которой функция принимает наименьшее значение, выбираем ее и строим вокруг нее окрестность.

Выбираем точку где хуже. В окрестности существующей точки выбираем точку с меньшим значением, опять в ее окрестности есть точки с меньшим значением и т.д.

 

В таком виде этот метод не эффективен.

Пример:

Шаг по х1 берем больше, а по х2 – сохраняем. Поскольку мы свободны в выборе точек, то можно менять шаг и направление.

Методы:

  1. Хука-Дживса;
  2. Нелдера-Мида (используется п-1 угольник)

 

Преимущества метода прямого поиска:

  1. простота;
  2. не нужны производные.

 

Недостатки:

  1. плохая сходимость;
  2. применим для небольшого числа переменных.

 

п £ 10¸20
2п точек: в случае 2-х переменных – 4 точки; в случае 3-х переменных – 6 точек.  

 

Этот метод применим в простых случаях, когда эти недостатки себя не проявляют.

<== предыдущая лекция | следующая лекция ==>
Функции 2-х переменных | Метод координатного спуска
Поделиться с друзьями:


Дата добавления: 2014-01-05; Просмотров: 489; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.048 сек.