КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Истечение жидкости из отверстий и насадков
Одной из практически важных задач, рассматриваемых в курсе гидравлики, является расчет истечения жидкости из отверстий. Особенность этой задачи состоит в том, что поток жидкости является очень коротким и поэтому можно пренебречь потерями на трение, так как они малы по сравнению с местными потерями, возникающими на выходе из отверстия. 1). Истечение жидкости в атмосферу. Рассмотрим истечение жидкости из отверстия в тонкой стенке резервуара в окружающую атмосферу (рис.50). Наблюдения показывают, что вытекающая из такого отверстия струя сжимается, и площадь Sс ее живого сечения после выхода из отверстия становится меньше площади отверстия S. Сжатие струи обусловлено действием сил инерции, возникающих в струе при огибании жидкостью кромок отверстия. Особенно сильно огибание кромок сказывается на частицах, траектории которых находятся под углами, близкими к 900 относительно оси отверстия, т. е. движущихся вдоль стенок. Степень сжатия определяется коэффициентом сжатия струи e=Sc/S. Величина этого коэффициента зависит от формы и абсолютных размеров отверстия, от скорости истечения, а также, в случае отверстия в вертикальной стенке, от расположения отверстия относительно дна сосуда. Если отверстие находится рядом с дном (на расстоянии меньше трех диаметров отверстия), то со стороны дна сжатия струи не будет, или оно будет частичным. В случае отсутствия влияния дна или других поперечных стенок на истечение из отверстия коэффициент сжатия для круглых и квадратных отверстий составляет e =0.60¸0.64. Вычислим скорость течения жидкости в струе, если на поверхности жидкости в резервуаре давление pp не равно атмосферному p0, куда вытекает струя. Глубина погружения отверстия под свободной поверхностью жидкости равна h. Течение в струе после ее выхода можно считать плавно изменяющимся. Применим уравнение Бернулли к сечениям потока, первое из которых совпадает со свободной поверхностью жидкости в резервуаре, а второе – с живым сечением струи сразу после ее выхода из отверстия. Пренебрегая потерями на трение жидкости о стенки резервуара, получим . Последнее слагаемое учитывает местную потерю на выходе из отверстия. Скорость опускания уровня в резервуаре Vср р будем считать малой. Это возможно только тогда, когда площадь отверстия S значительно меньше площади свободной поверхности жидкости в резервуаре Sp, тогда квадратом скорости в первом слагаемом уравнения Бернулли можно пренебречь. С учетом этого для средней скорости истечения жидкости из отверстия получим выражение . (5.25) Теперь определим расход Q жидкости при истечении из отверстия . Подставляя сюда величину средней скорости из (5.25), и выражая площадь сечения струи Sc через площадь отверстия, находим . (5.26) Величина (5.27) называется коэффициентом расхода данного отверстия. Таким образом, можно записать окончательно . (5.28) Значения коэффициента расхода определяются экспериментально. Для небольших круглых и квадратных отверстий в среднем m =0.62, для более крупных отверстий m =0.65¸0.70. При наличии влияния стенок коэффициент расхода увеличивается, а по мере увеличения напора h он уменьшается. 2). Истечение через затопленное отверстие. Для судостроения представляет интерес случай истечения через затопленное отверстие, т. е. перетекание из одной заполненной емкости в другую, которая заполнена частично (рис.51). При таком истечении происходит сжатие струи с последующим ее расширением. В связи с этим, кроме потерь энергии на выходе из отверстия, следует учитывать также потери вследствие внезапного расширения струи. Проведем плоскость сравнения через ось отверстия, полагая изменения высот уровня жидкости слева и справа от отверстия малыми и пренебрегая их квадратами, запишем уравнение Бернулли для сечений, расположенных на свободной поверхности. Учитывая при этом местные потери энергии в отверстии, получим , откуда . Коэффициент расширения zр в данном случае практически равен единице. С учетом этого расход жидкости через затопленное отверстие . (5.29) Коэффициент расхода затопленного отверстия близок по величине к коэффициенту незатопленного отверстия, так как в (5.27) можно положить a»1. 3). Истечение через насадки. Для увеличения расхода жидкости и создания направленной струи к отверстию приставляют трубки небольшой длины, которые называются насадками. Насадки могут быть различной формы (рис.52) – цилиндрические – I и II, конические – сходящиеся и расходящиеся - III и IV, коноидальные V. Кроме того, они делятся на внутренние II и III и внешние I IV, V. При правильном режиме работы насадка живое сечение выходящей через него струи равно площади выходного сечения насадка. При этом устраняется сжатие струи на выходе из насадка, и коэффициент сжатия струи на выходе e =1. В этом состоит основное свойство насадка. Рассмотрим принцип действия цилиндрического внешнего насадка (рис.53). Струя, входящая в насадок, сначала сжимается, аналогично выходу из отверстия. Однако в дальнейшем струя расширяется, и на некотором расстоянии от входа занимает все сечение насадка. Воздух, заключенный в пространстве между сжатой струей и стенками насадка, уносится потоком воды, и в этом промежутке, то есть в сжатом сечении, на поверхности жидкости образуется вакуум – разрежение. В результате вакуума увеличивается перепад давления между свобод-ной поверхностью жид-кости и сжатой струей по сравнению с имею-щим место при исте-чении жидкости из простого отверстия. Это вызывает, согласно уравнению Бернулли, возрастание скорости в сжатом сечении в насадке – насадок как бы сосет воду. Однако в насадке увеличиваются и потери энергии. Во-первых, за счет потерь на расширение струи в насадке, во-вторых, за счет потерь на трение жидкости о стенки насадка. При правильной конструкции насадка влияние этих возросших потерь должно компенсироваться эффектом засасывания, в результате чего расход насадка должен быть больше расхода отверстия. Средняя скорость на выходе из насадка получается путем применения уравнения Бернулли для сечения на поверхности воды в баке и для сжатого сечения в насадке. Проведя преобразования, аналогичные проделанным для истечения жидкости из отверстия, получим формулу , где z0н – коэффициент местных потерь на вход в насадок, zр - коэффициент местных потерь при расширении струи, l - коэффициент потерь на трение в насадке. Расход воды в насадке, с учетом того, что e =1, будет . Коэффициент расхода насадка должен быть больше коэффициента расхода отверстия (5.25), то есть . Это условие можно свести к более простому соотношению, дающему геометрические параметры насадка . В соответствии с этим условием предельная длина насадка в зависимости от коэффициента сопротивления l L =(40¸50) D. При длине насадков L =(3¸4) D их коэффициент расхода m»0.82. В насадках меньшей длины возможен прорыв воздуха извне в зону вакуума; при этом струя в насадке не сможет расшириться и коэффициент расхода резко уменьшится. Максимальный коэффициент расхода m =0.95 имеют конические сходящиеся насадки с углом конусности 130. Для расходящихся насадков характерно наибольшее разрежение в сжатом сечении, такие насадки применяют в тех случаях, когда нужно обеспечить большой расход жидкости при небольших скоростях на выходе из насадка.
Дата добавления: 2014-01-05; Просмотров: 721; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |