КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Ситуация равновесия в биматричных играх
Мы предполагаем уделить основное внимание случаю, когда у каждого из игроков имеется ровно две стратегии, т. е. случаю т = п = 2. Поэтому нам кажется уместным выписать приведенные выше формулы именно для такого случая. В 2 ´ 2 биматричной игре платежные матрицы игроков имеют следующий вид
, ,
вероятности биматричная игра решение
а средние выигрыши вычисляются по формулам
где ,
Сформулируем основное определение. Определение. Будем считать, что пара чисел
, ,
определяет равновесную ситуацию, если для любых р и q, подчиненных условиям одновременно выполнены следующие неравенства
(1) Пояснение. Выписанные неравенства (1) означают следующее: ситуация, определяемая смешанной стратегией (р*, q*), является равновесной, если отклонение от нее одного из игроков при условии, что другой сохраняет свой выбор, приводит к тому, что выигрыш отклонившегося игрока может только уменьшиться. Тем самым, получается, что если равновесная ситуация существует, то отклонение от нее невыгодно самому игроку. Теорема 1 (Дж. Нэш). Всякая биматричная игра имеет хотя бы одну равновесную ситуацию (точку равновесия) в смешанных стратегиях. Итак, равновесная ситуация существует. Но как ее найти? Если некоторая пара чисел (р*, q*) претендует на то, чтобы определять ситуацию равновесия, то для того, чтобы убедиться в обоснованности этих претензий, или, наоборот, доказать их необоснованность, необходимо проверить справедливость неравенств (1) для любого р в пределах от 0 до 1 и для любого q в пределах от 0 до 1. В общем случае число таких проверок бесконечно. И, следовательно, действенный способ определения равновесной ситуации нужно искать где-то в ином месте. Теорема 2. Выполнение неравенств (1)
равносильно выполнению неравенств
(2)
Иными словами, для того, чтобы убедиться в обоснованности претензий пары (р*, q*) на то, чтобы определять равновесную ситуацию, нужно проверить справедливость неравенства
только для двух чистых стратегий игрока А (р = 0 и р = 1) и неравенства
только для двух чистых стратегий игрока В (q = 0 и q= 1). Четыре неравенства (2) позволяют провести поиск точки равновесия вполне конструктивно. Запишем средние выигрыши игроков А и В в более удобной форме. Имеем
Обратимся к первой из полученных формул. Полагая в ней сначала р = 1, а потом р = 0, получаем,
Рассмотрим разности
Полагая
получим для них следующие выражения
В случае, если пара (р, q) определяет точку равновесия, эти разности неотрицательны
Поэтому окончательно получаем
Из формул для функции нв (р, q) при q = 1 и q = 0 соответственно имеем
Разности
и
с учетом обозначений
.
приводятся к виду
совершенно так же, как соответствующие разности для функции НА. Если пара (р, q) определяет точку равновесия, то эти разности неотрицательны
Поэтому
Дата добавления: 2014-01-05; Просмотров: 2138; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |