КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Критерий предельного уровня
Критерий предельного уровня не дает оптимального решения, максимизирующего, например, прибыль или минимизирующего затраты. Скорее он соответствует определению приемлемого способа действий. Пример 3. Предположим, что величина спроса x в единицу времени (интенсивность спроса) на некоторый товар задаётся непрерывной функцией распределения f(x). Если запасы в начальный момент невелики, в дальнейшем возможен дефицит товара. В противном случае к концу рассматриваемого периода запасы нереализованного товара могут оказаться очень большими. В обоих случаях возможны потери. Т.к. определить потери от дефицита очень трудно, ЛПР может установить необходимый уровень запасов таким образом, чтобы величина ожидаемого дефицита не превышала А1 единиц, а величина ожидаемых излишков не превышала А2 единиц. Иными словами, пусть I искомый уровень запасов. Тогда ожидаемый дефицит = , ожидаемые излишки =. При произвольном выборе А1 и А2 указанные условия могут оказаться противоречивыми. В этом случае необходимо ослабить одно из ограничений, чтобы обеспечить допустимость. Пусть, например,
Тогда = = 20(ln + 1)
= = 20(ln + 1) Применение критерия предельного уровня приводит к неравенствам ln I ³ ln 20 1 = 1.996
ln I ³ ln 10 1 = 1.302 Предельные значения А1 и А2 должны быть выбраны так, что бы оба неравенства выполнялись хотя бы для одного значения I. Например, если А1 = 2 и А2 = 4, неравенства принимают вид ln I ³ 1.896 ln I ³ 1.102 Значение I должно находиться между 10 и 20, т.к. именно в этих пределах изменяется спрос. Из таблицы видно, что оба условия выполняются для I, из интервала (13,17)
Любое из этих значений удовлетворяет условиям задачи. Вопросы для самоконтроля: 1.Как задается вероятностная мера на множестве состояний природы, если множество конечно? 2.Что такое априорное распределение вероятностей на множестве состояний природы. 3.В каких случаях говорят, что принятие решения происходит в условиях риска? 4.Как определяется критерий математического ожидания? 5.Что такое байесовская стратегия, байесовский подход?
Список литературы Основная:
Дополнительная:
Лекция № 11-12. Теория принятия решений в условиях неопределённости. Цель: изучить особенности основные принципы принятия решений в условиях неопределённости. Ключевые слова: критерии принятия решений в условиях неопределённости. Вопросы: 1. Постановка задачи; 2. Классические критерии принятия решений. 3. Производные критерии принятия решений.
Дата добавления: 2014-01-05; Просмотров: 607; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |