Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Критерий ожидаемого значения

Лекция № 10.Теория принятия решений в условиях риска.

 

Цель: изучить особенности основные принципы принятия решений.

Ключевые слова: критерии принятия решений.

 

1. Критерий ожидаемого значения.

2. Критерий: ожидаемое значение - дисперсия.

3. Критерий предельного уровня.

Использование критерия ожидаемого значения обусловлено стремлением максимизировать ожидаемую прибыль (или минимизировать ожидаемые затраты). Использование ожидаемых величин предполагает возможность многократного решения одной и той же задачи, пока не будут получены достаточно точные расчётные формулы. Математически это выглядит так: пусть Х случайная величина с математическим ожиданием MX и дисперсией DX. Если x1,x2,...,xn  значения случайной величины (с.в.) X, то среднее арифметическое их (выборочное среднее) значений имеет дисперсию . Таким образом, когда n ® ¥

® 0 и ® MX.

Другими словами при достаточно большом объёме выборки разница между средним арифметическим и математическим ожиданием стремится к нулю (так называемая предельная теорема теории вероятности). Следовательно, использование критерия ожидаемое значение справедливо только в случае, когда одно и тоже решение приходится применять достаточно большое число раз. Верно и обратное: ориентация на ожидания будет приводить к неверным результатам, для решений, которые приходится принимать небольшое число раз.

Пример 1. Требуется принять решение о том, когда необходимо проводить профилактический ремонт ПЭВМ, чтобы минимизировать потери из-за неисправности. В случае если ремонт будет производится слишком часто, затраты на обслуживание будут большими при малых потерях из-за случайных поломок.

Так как невозможно предсказать заранее, когда возникнет неисправность, необходимо найти вероятность того, что ПЭВМ выйдет из строя в период времени t. В этом и состоит элемент риска.

Математически это выглядит так: ПЭВМ ремонтируется индивидуально, если она остановилась из-за поломки. Через T интервалов времени выполняется профилактический ремонт всех n ПЭВМ. Необходимо определить оптимальное значение Т, при котором минимизируются общие затраты на ремонт неисправных ПЭВМ и проведение профилактического ремонта в расчёте на один интервал времени.

Пусть рt  вероятность выхода из строя одной ПЭВМ в момент t, а nt  случайная величина, равная числу всех вышедших из строя ПЭВМ в тот же момент. Пусть далее С1  затраты на ремонт неисправной ПЭВМ и С2  затраты на профилактический ремонт одной машины.

Применение критерия ожидаемого значения в данном случае оправдано, если ПЭВМ работают в течение большого периода времени. При этом ожидаемые затраты на один интервал составят

ОЗ = ,

где M(nt)  математическое ожидание числа вышедших из строя ПЭВМ в момент t. Так как nt имеет биномиальное распределение с параметрами (n, pt), то M(nt) = npt. Таким образом

ОЗ =

Необходимые условия оптимальности T* имеют вид:

ОЗ (T*-1) ³ ОЗ (T*),

ОЗ (T*+1) ³ ОЗ (T*).

Следовательно, начиная с малого значения T, вычисляют ОЗ(T), пока не будут удовлетворены необходимые условия оптимальности.

Пусть С1 = 100; С2 = 10; n = 50. Значения pt имеют вид:

 

T рt ОЗ(Т)
  0.05  
  0.07 0.05  
  0.10 0.12 366.7
  0.13 0.22  
  0.18 0.35  

 

T*® 3, ОЗ(Т*) ® 366.7

 

Следовательно профилактический ремонт необходимо делать через T*=3 интервала времени.

 

2. Критерий: ожидаемое значение-дисперсия.

Критерий ожидаемого значения можно модифицировать так, что его можно будет применить и для редко повторяющихся ситуаций.

Если х  с. в. с дисперсией DX, то среднее арифметическое имеет дисперсию , где n  число слогаемых в . Следовательно, если DX уменьшается, и вероятность того, что близко к MX, увеличивается. Следовательно, целесообразно ввести критерий, в котором максимизация ожидаемого значения прибыли сочетается с минимизацией её дисперсии.

 

Пример 2. Применим критерий ожидаемое значение  дисперсия для примера 1. Для этого необходимо найти дисперсию затрат за один интервал времени, т.е. дисперсию

зТ =

Т.к. nt, t =  с.в., то зТ также с.в. С.в. nt имеет биномиальное распределение с M(nt) = npt и D(nt) = npt(1pt). Следовательно,

D(зТ) = D = D() =

= = = n ,

где С2n = const.

Из примера 1 следует, что

М(зТ) = М(з(Т)).

Следовательно искомым критерием будет минимум выражения

 

М(з(Т)) + к D(зТ).

Замечание. Константу к можно рассматривать как уровень не склонности к риску, т.к. к определяет степень возможности дисперсии Д(зТ) по отношению к математическому ожиданию. Например, если предприниматель, особенно остро реагирует на большие отрицательные отклонения прибыли вниз от М(з(Т)), то он может выбрать к много больше 1. Это придаёт больший вес дисперсии и приводит к решению, уменьшающему вероятность больших потерь прибыли.

 

 

При к =1 получаем задачу

По данным из примера 1 можно составить следующую таблицу

 

Т pt pt2 М(з(Т))+D(з(Т))
  0.05 0.0025     500.00
  0.07 0.0049 0.05 0.0025 6312.50
  0.10 0.0100 0.12 0.0074 6622.22
  0.13 0.0169 0.22 0.0174 6731.25
  0.18 0.0324 0.35 0.0343 6764.00

 

Из таблицы видно, что профилактический ремонт необходимо делать в течение каждого интервала Т*=1.

 

 

<== предыдущая лекция | следующая лекция ==>
Пример. Министерство желает построить один из двух объектов на территории города | Критерий предельного уровня
Поделиться с друзьями:


Дата добавления: 2014-01-05; Просмотров: 930; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.022 сек.