Пусть Х – конечное множество, состоящее из n элементов. Тогда говорят, что объект х из Х можно выбрать n способами: . Пусть Х1, …, Хk – попарно непересекающиеся множества. Тогда выполняется равенство
.
В комбинаторике этот факт называется правилом суммы. Для k =2 оно формулируется следующим образом:
Если объект х можно выбрать m способами, а объект у – другими n способами, то выбор “либо х, либо у ” можно осуществить m + n способами.
Другим часто применяемым в комбинаторике правилом является правило произведения.
Если объект х можно выбрать m способами и после каждого из таких выборов объект у в свою очередь может быть выбран n способами, то выбор “ х и у ” в указанном порядке можно осуществить mn способами.
Правило произведения также можно обобщить на случай нескольких (трех и более) объектов.
Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет
studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав!Последнее добавление