Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Тема 5. Барометрическая формула. Распределение Больцмана




Читайте также:
  1. Б. Эмпирическое распределение задано в виде последовательности интервалов одинаковой длины и соответствующих им частот.
  2. Барометрическая формула
  3. Барометрическая формула. Распределение Больцмана
  4. Влияние жесткости фундаментов на распределение контактных напряжений.
  5. Гамма-распределение
  6. Генерирование и распределение электроэнергии на судах.
  7. Географическое распределение мировой торговли
  8. Двойное показательное распределение
  9. За счет какого направления основного миграционного потока внутри России происходит перераспределение населения в пользу европейских регионов?
  10. И личное распределение доходов.
  11. Косвенные налоги и распределение налогового бремени.
  12. Напряженность электрического поля. Непрерывное распределение зарядов. Принцип суперпозиции полей.

Тема 4. Распределение молекул идеального газа по скоростям.

В газе, находящемся в состоянии равновесия при определенной температуре, устанавливается некоторое стационарное, не меняющееся со временем распределение молекул по скоростям. Максвелл установил, что это распределение для идеального газа описывается некоторой функцией , называемой функцией распределения молекул газа по скоростям.

Если разбить диапазон скоростей молекул на малые интервалы, равные , то на каждый интервал скорости будет приходиться некоторое число молекул , имеющих скорость, заключенную в этом интервале. Функция определяет относительное число молекул , скорости которых лежат в интервале от до , т. е.

, откуда .

Применяя методы теории вероятностей, Максвелл нашел вид этой функции:

,

где – масса одной молекулы газа.

График этой функции приведен на рис. 2.

 

Рис. 2

Относительное число молекул , скорости которых лежат в интервале от до , соответствует площади заштрихованной на рис. 2 полоски. Площадь под всей кривой распределения равна единице. Это означает, что функция удовлетворяет условию нормировки:

.

Скорость, при которой функция распределения молекул идеального газа по скоростям максимальна, называется наиболее вероятной скоростью:

.

Из этой формулы следует, что при повышении температуры максимум функции распределения молекул по скоростям (рис. 3) смещается вправо. При этом величина максимума функции распределения молекул по скоростям с повышением температуры уменьшается (рис. 3).

 

Рис. 3

Кроме наиболее вероятной скорости , на рис. 2 приведены также средняя арифметическая скоростьмолекул и средняя квадратичная скоростьмолекул , которые определяются по формулам:

; .

Барометрическая формула определяет зависимость атмосферного давления воздуха от высоты. Молекулы воздуха находятся, с одной стороны, в потенциальном поле сил тяготения Земли, а, с другой – , в состоянии теплового хаотического движения, что приводит к некоторому стационарному состоянию, при котором давление газа с высотой убывает.

Если атмосферное давление на высоте h равно р (рис. 4), то на высоте h+dh оно равно p+dp , причем при dh>0 изменение давления dp<0.

Так как dh настолько мало, что при изменении высоты h в этих пределах плотность воздуха можно считать постоянной, то разность давлений:

, то есть .

 

Рис. 4

Выражение для плотности газа можно получить из уравнения состояния идеального газа , а именно ,

где m – масса газа, – молярная масса газа.

Тогда или .

С изменением высоты от 0 до h давление изменяется от р0 до р (рис. 4). Поэтому, интегрируя в этих пределах предыдущее уравнение, получим:



, то есть ,

откуда

.

Это выражение называется барометрической формулой, где р0 – давление на нулевом уровне отсчета высоты h, то есть на уровне, где принято h = 0.

Барометрическую формулу можно преобразовать в зависимость концентрации молекул воздуха n от высоты h, если воспользоваться уравнением состояния идеального газа p=nkT :

,

где n – концентрация молекул воздуха на высоте h,

n0 – концентрация молекул воздуха на высоте h=0.

Так как (m0 – масса одной молекулы, – постоянная Авогадро), a , то или .

В этой формуле , где U – потенциальная энергия молекулы массой m0 , находящейся в поле сил тяготения Земли на высоте h от уровня, на котором потенциальная энергия молекул воздуха принята равной нулю, а концентрация молекул обозначена как n0. Тогда n соответствует концентрации молекул в том месте, где потенциальная энергия молекулы воздуха равна U. Таким образом, получено распределение молекул по потенциальной энергии в силовом поле (распределение Больцмана).





Дата добавления: 2014-01-05; Просмотров: 213; Нарушение авторских прав?;


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



ПОИСК ПО САЙТУ:


Рекомендуемые страницы:

Читайте также:
studopedia.su - Студопедия (2013 - 2019) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление
Генерация страницы за: 0.005 сек.