Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Понятие системы массового обслуживания

Читайте также:
  1. APS системы
  2. CASE-системы
  3. CSPR системы
  4. Cимпатическая нервная система. Центральный и периферический отдел симпатической нервной системы.
  5. ERP системы
  6. I - подсистемы - об этом речь шла выше.
  7. I. Конституционное право России как отрасль российской правовой системы.
  8. I. Концепция безопасности системы защиты
  9. I. Открытые системы как предмет синергетики
  10. I. Понятие законности. Соотношение законности, права и власти.
  11. I. Понятие и виды источников (форм) права.
  12. I. Понятие и структура политической системы общества.



План лекции

1. Понятие системы массового обслуживания

2. Классификация систем массового обслуживания.

3. Простейший поток событий и его свойства

 

Объектом изучения теории массового обслуживания (ТМО) являются процессы обработки поступающих потоков сообщений системами массового обслуживания, а именно их количественные характеристики. Примерами систем массового обслуживания могут служить телефонные станции, локальные и глобальные вычислительные сети и т.п.

Основы новой теории были заложены в трудах датского математика, А. К. Эрланга (принцип статистического равновесия) и получили дальнейшее развитие в работах многих отечественных и зарубежных ученых .

Математическая модель системы массового обслуживания (СМО) включает четыре основных элемента: поток поступающих сообщений, систему обслуживания, характеристики качества и дисциплину обслуживания.

Понятие потока сообщений включает информацию о модели потока вызовов (требований на соединение), законе распределения, длительности обслуживания (передачи) сообщений, множестве адресов источников и приемников сообщений, а так же типе занимаемого для передачи сообщений канала и способе передачи - аналоговом или дискретном. Система обслуживания характеризуется структурой построения и набором структурных параметров. Под дисциплиной обслуживания поступающих сообщений понимают: способ обслуживания (с явными потерями, ожиданием, повторением или комбинированный), порядок обслуживания (в порядке очередности, случайном порядке или с приоритетом), а также другую информацию, характеризующую взаимодействие потока сообщений с системой обслуживания. К характеристикам качества обслуживания относятся:

1. Вероятность явной или условной потери сообщения

2. Среднее время задержки сообщения

3. Средняя длинна очереди

4. Вероятность потери поступившего вызова

5. Интенсивность обслуженной нагрузки и др.

При исследовании СМО могут решаться:

1. задачи анализа СМО - определение характеристик качества обслуживания в зависимости от параметров и свойств входящего потока сообщений, параметров и структуры системы обслуживания и дисциплины обслуживания;

2. задачи параметрического синтеза - определение параметров системы обслуживания при ее заданной структуре в зависимости от параметров и свойств потока сообщений, дисциплины и качества обслуживания.

3. задачи синтеза структуры системы с оптимизацией ее параметров таким образом, чтобы при заданных потоках, дисциплине и качестве обслуживания стоимость СМО была минимальной, либо были минимальными потери вызовов при заданных потоках, дисциплине и стоимости системы.



Математический аппарат теории массового обслуживания информации базируется на теории вероятностей, комбинаторике и математической статистике. Методы последней применяются в основном для обработки данных, получаемых при измерении параметров потоков сообщений и показателей качества обслуживания в реальных системах, а также при моделировании таких систем на ЭВМ. Для решения конкретных задач используются также сведения из других разделов математики, а именно: линейной алгебры, дифференциального и интегрального исчисления, теории графов, системного анализа.

Основным инструментом исследования в ТМО является метод уравнений вероятностей состояний, основанный на принципе статистического равновесия. Для системы обслуживания вводится понятие состояния. В простейшем случаесостояние системы характеризуется одной случайной переменной, например числом занятых линий или вызовов, находящихся на обслуживании и в очереди.

При поступлении очередного вызова, окончании обслуживания сообщения или изменении фазы работы управляющего устройства система меняет свое состояние. Интенсивности перехода из одного состояния в другое обычно известны на основании свойств потоков вызовов и освобождений. Это позволяет построить размеченный граф состояний и составить систему уравнений, связывающих между собой вероятности соседних состояний. Систему можно решить аналитически или численно.

При отсутствии аналитического решения в ряде случаев удается построить вычислительный алгоритм на основе рекуррентных соотношений, получаемых непосредственно из системы уравнений.

2.Классификация систем массового обслуживания.

В каждую систему массового обслуживания (СМО) поступает входящий поток заявок на обслуживание. Результатом работы СМО является выходящий поток обслуженных заявок.

Потоком заявок (событий) называется последовательность однородных событий, происходящих в какие-то случайные моменты времени.

Если в СМО одновременно может обслуживаться несколько заявок, то СМО называется многоканальной, в противном случае СМО называется одноканальной.

Как одноканальные СМО, так и многоканальные СМО делятся на СМО с отказами и СМО с очередью (ожиданием).

В СМО с отказами заявка, поступившая в момент, когда все каналы обслуживания заняты, получает «отказ» в обслуживании и покидает СМО.

В СМО с очередью заявка, поступившая в момент, когда все каналы обслуживания заняты, становится в очередь из заявок, ожидающих обслуживания. Как только один из каналов обслуживания освобождается, к обслуживанию принимается одна из заявок, стоящих в очереди.

СМО с очередью различаются по принципу построения (дисциплине) очереди.

Принципом построения очереди называется схема, в соответствии с которой заявки из очереди выбираются на обслуживание. Чаще всего при этом используется:

Случайный выбор заявки из очереди;

Выбор заявки из очереди в зависимости от её приоритета;

Выбор заявки в зависимости от порядка её поступления в очередь.

В третьем случае заявки из очереди могут обслуживаться, как по схеме: «Первым пришел - первым обслуживаешься», так и по схеме: «Последним пришел - первым обслуживаешься».

СМО с очередью делятся также на СМО с неограниченным ожиданием и СМО с ограниченным ожиданием.

В СМО с неограниченным ожиданием каждая заявка, поступившая в СМО, рано или поздно будет обслужена.

В СМО с ограниченным ожиданием на пребывание заявок в очереди накладываются различного рода ограничения. Эти ограничения могут касаться, например, длины очереди, времени пребывания заявки в очереди, общего времени пребывания заявки в СМО и т.п. В частности, в СМО с ограниченным временем пребывания в очереди, заявка, израсходовавшая лимит времени пребывания в очереди, покидает СМО.

Для систем массового обслуживания существенными, характеристиками, определяющими процессы в СМО, являются:

— тип входящего потока заявок (простейший, нестационарный пуассоновский и т. д.);

— закон распределения времени обслуживания (показательный, произвольный и т. д.);

— число параллельно включенных каналов обслуживания. Кроме того, важное значение имеют такие характеристики, как структура системы (разомкнутая или замкнутая) и принятая в системе дисциплина обслуживания.

В теории СМО принято классифицировать СМО с помо­щью трехбуквенного сокращения вида А\В\ т, где А и В опи­сывают соответственно распределение интервалов времени во входном потоке заявок и времени их обслуживания, а m — число обслуживающих приборов. Символы А и В представля­ют переменные, принимающие значения из следующего набора: символов, которые следует интерпретировать как соответству­ющие распределения

М — показательное распределение (Marcovian)

D — постоянная величина (Determinate)

G — произвольное распределение (General).

3. Простейший поток событий и его свойства.

Поток событий называется простейшим потоком событий, если он об­ладает следующими свойствами стационарности, отсутствия последействия и ординарности:

1. Поток событий называется стационарным, если вероятность появ­ления одного или нескольких событий на участке времени длины T зависит только от длины T этого участка и не зависит от того, в каком месте оси вре­мени этот участок располагается.

2. Поток событий называется потоком с отсутствием последействия (без последействия), если события, составляющие поток, появляются в слу­чайные моменты времени независимо друг от друга.

3. Поток событий называется ординарным, если события, составляющие поток, происходят поодиночке, а не парами, тройками и т.д.

Замечание. Поток, в котором события происходят через равные промежутки времени, не является простейшим потоком событий!

• Интенсивностью (плотностью) потока событий называется среднее число событий, происходящих в единицу времени.

Замечание. Простейший поток событий обладает постоянной интенсив­ностью.

 

Контрольные вопросы:

1. Что называется потоком заявок?

2. Как классифицируются системы массового обслуживании?

3. Что называется принципом построения очереди?

4. Какой поток событий называется простейшим?

5. Какой поток событий называется стационарным?

 

Тема № 3 «Модели и свойства элементарных систем массового обслуживания»

Лекция № 6 «Структура системы массового обслуживания»

Цель лекции.

а) учебная цель:

Целью является формирование у слушателей целостного представления о принципах применения элементов теории вероятностей при моделировании сетевых процессов – элемента систем массового обслуживания.





Дата добавления: 2014-01-05; Просмотров: 903; Нарушение авторских прав?;


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



ПОИСК ПО САЙТУ:


Читайте также:



studopedia.su - Студопедия (2013 - 2017) год. Не является автором материалов, а предоставляет студентам возможность бесплатного обучения и использования! Последнее добавление ip: 23.20.120.3
Генерация страницы за: 0.01 сек.