Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Запись положительных рациональных чисел в виде десятичных дробей




Лекция 50. Десятичные дроби

План:

1. Десятичные дроби. Алгоритмы арифметических действий над ними.

2. Преобразование обыкновенных дробей в десятичные.

3. Рациональные числа как бесконечные десятичные периодические дроби.

4. Преобразование периодических десятичных дробей в обыкновенные.

В практической деятельности широко используются дроби, знаме­натели которых являются степенями 10. Их называют десятичными.

Определение. Десятичной называется дробь вида , где m и n - натуральные числа.

Десятичные дроби принято записывать без знаменателя. Например, дробь - записывают в виде 3,67, а дробь в виде 0,007.

Выясним, как образуется такая запись. 10

 

Пусть дана дробь , где m и n - натуральные числа. Представим ее числитель в

следующем виде:

m = a ∙ 10 + a ∙10+ …+ a ∙10 + a ₀.

Тогда, по правилам действий над степенями при n < k, получим:

= a ∙ 10 + a ∙10+ …+ a + + … +.

Сумма a ∙ 10 + a ∙10+ …+ a является записью целого неотрицательного числа (обозначим его буквой А), а сумма + … +

представляет дробную часть числа, ее принято записывать без знаменателя в виде аa ₀. Таким образом, дробь —- можно представить в следующем виде: А, аa ₀, т.е. при записи дроби последние n цифр десятичной записи числа m отделяют запятой. Если числитель содержит менее чем n десятичных знаков, то перед ним пишут столько нулей, чтобы получилась n + 1 цифра, после чего отделяют запятой n знаков, начиная с конца. Например,

= = 0,0047.

Как известно, сравнение десятичных дробей и арифметические дей­ствия над ними легко выполнять, если дроби имеют один и тот же знаменатель.

В основе приведения десятичных дробей к общему знаменателю лежит следующее утверждение: если к десятичной дроби А, аa ₀, приписать справа любое число нулей, то получится десятичная дробь, равная данной.

Это свойство позволяет приводить десятичные дроби к общему знаменателю следующим образом: если у одной дроби после запятой стоит n цифр, а у другой р цифр, причем n < р, то для приведения их к общему знаменателю достаточно к первой дроби приписать справа р- n нулей. Тогда у обеих дробей после запятой будет стоять по­ровну цифр, а это значит, что они имеют один и тот же знаменатель.

Пользуясь этим правилом, легко выполнять сравнение десятичных дробей, так как оно сводится к сравнению натуральных чисел: чтобы сравнить две десятичные дроби, надо уравнять в них число десятичных знаков после запятой, отбросить запятые и сравнить получившие­ся натуральные числа.

Например, 4,62517 > 4,623, так как 4,623 = 4,62300, а 4,62517 > 4,62300, так как 462517 > 462300.

Как известно, для дробей, имеющих одинаковые знаменатели, сложение и вычитание сводится к соответствующим операциям над их числителями. Это позволяет свести сложение и вычитание десятичных дробей к действиям над натуральными числами.

Например,

2,54 + 3,7126 = 2,5400 + 3,7126 = 6,2526.

Умножение и деление десятичных дробей не требует приведения их к общему знаменателю, но они также сводятся к соответствую­щим действиям над натуральными числами.

Среди десятичных дробей выделяют и часто используют дробь 0,01. Ее называют процентом и обозначают 1%. Запись р % обозначает.

Например, 25% - это дробь , или 0,25.

Проценты были введены, когда не существовало десятичных дробей. Чтобы производить расчеты по займам, определяли при­рост капитала из расчета 100 денежных единиц. Этот прирост и называли числом процентов (рго сеntum - на сто).

Простота сравнения и выполнения действий над десятичными дробями приводит к следующему вопросу: любую ли дробь вида

(m, n ÎN) можно записать в виде конечной десятичной дроби, т.е. дроби, у которой после запятой стоит конечное число цифр? Ответ на него дает следующая теорема.

Теорема. Для того чтобы несократимая дробь была равна десятичной, необходимо и достаточно, чтобы в разложение ее знаме­нателя и на простые множители входили лишь простые числа 2 и 5.

Так, например, дробь можно записать в виде десятичной: она 80

несократима и 80 = 2⁴∙5. Дробь несократима, но 15 = 3∙5. По­скольку в разложение знаменателя этой дроби входит множитель, отличный от 2 и 5, то дробь — нельзя записать в виде десятичной.

 

Дробь - нельзя представить в виде конечной десятичной дроби. Но, деля 1 на 3, получаем, что 0,3 < < 0,4. Далее находим, что 0,33 < < 0,34; 0,333 < < 0,334 и т.д. Вообще для любого n имеем: 0,33...33<< 0.33...34

Вместо того чтобы писать бесконечное множество неравенств, го­ворят, что дроби соответствует бесконечная десятичная дробь 0,33…3… Это означает, что если отбросить в бесконечной дроби все цифры, начиная с некоторой, то будем иметь число, меньшее , а если в полученном числе увеличить последнюю цифру на 1, то будет число, большее .

Любую конечную десятичную дробь можно записать в виде беско­нечной, приписав к ней справа последовательность нулей. Например, дробь 0,25 можно записать так: 0,25000...0.... Здесь для всех цифр, начи­ная с некоторой, получится число, не превосходящее 0,25 (например, если оставить лишь одну цифру после запятой, то получится 0,2, меньшее 0,25, а если оставить три цифры после запятой, то будет число 0,250, равное 0,25). Если же после отбрасывания увеличить последнюю циф­ру на 1, то имеем число, большее 0,25 (например, 0,3 или 0,251).

Бесконечные десятичные дроби, которые получаются при записи положительного рационального числа, обладают особенностью - они являются периодическими. Это значит, что, начиная с некоторой циф­ры, они образуются бесконечным повторением одной и той же группы цифр. Например, число выражается бесконечной десятичной дробью 0,272727...27..., а число - бесконечной десятичной дробью 0,1454545...45.... Для краткости первую из дробей пишут в виде 0,(27), а вторую - в виде 0,1(45). В скобки заключают повторяющуюся груп­пу цифр, которую называют периодом этой дроби. Отметим, что вме­сто 0,(27) можно было написать и 0,2(72), но эта запись более длинная. Приведенные рассуждения приводят к следующей теореме.

Теорема. Любое положительное рациональное число представимо бесконечной периодической десятичной дробью.

Доказательство. Пусть рациональное число представлено не­сократимой дробью —. Чтобы преобразовать ее в десятичную, надо выполнить деление натурального числа m на натуральное число n. При этом будут остатки, меньшие n, т.е. числа вида 0, 1, 2,... n - 1. Если хотя бы один из остатков окажется равным нулю, то после деле­ния получится конечная десятичная дробь (или, что то же самое, бес­конечная десятичная дробь, заканчивающаяся последовательностью нулей). Если же все остатки отличны от нуля, то деление будет пред­ставлять собой бесконечный процесс, но количество различных ос­татков конечно, и поэтому, начиная с некоторого шага, какой-то ос­таток повторится, что приведет к повторению цифр в частном.




Поделиться с друзьями:


Дата добавления: 2014-01-06; Просмотров: 822; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.007 сек.