КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Статистические распределения ущерба
Рассмотрим несколько типичных вариантов зависимости между вероятностью и величиной ущерба, которые может нам дать некоторый набор событий для отдельного вида риска. На рис. 4.14. представлен вариант функции распределения величины убытка для отказов некоторой промышленной установки. Небольшие убытки происходят с наибольшей частотой. Максимальные убытки соответствуют крупным авариям, вплоть до полного разрушения установки. Вероятность наступления таких случаев наименьшая. Эта область убытков соответствует правой части диаграммы.
![]()
Рис. 4.14. Типичный вид простой зависимости «вероятность–ущерб»: А – для отдельных событий; Б – для убытков, суммированных в течение финансового года На рис. 4.14 Б показана функция распределения характерная для убытков в течение финансового года. Диаграмма строится следующим образом: · горизонтальная ось делится на равные интервалы; · группируются все события с размерами убытков, попадающими в выделенный интервал на горизонтальной оси · подсчитывается общее количество случаев убытков для данного интервала и нормируется на общее-число случаев убытков в течение финансового года. На рис. 4.14 Б видно, что по сравнению с рис. 4.14 А вероятность маленьких убытков уменьшилась. На диаграмме появился максимум, соответствующий наиболее вероятному значению убытка. Диаграммы, показанные на рисунке, обнаруживают свойства, характерных для распределений ущербов: дискретность и неполноту данных. Здесь мы сталкиваемся с наличием репрезентативной статистики для проведения анализа риска. Для каждой дискретной зависимости «вероятность–ущерб», полученной опытным путем, может быть подобрана непрерывная функция распределения, выраженная в простой и интегральной форме. Удобнее использовать интегральную форму, поскольку она менее критична к возможным ошибкам и пропускам в данных. На рис. 4.15 показана зависимость «вероятность–ущерб», представленная в интегральной форме
Рис. 4.14. Интегральная зависимость «вероятность–ущерб» и её аппроксимация нормальной функцией распределения
Далее, встает вопрос о выборе вида функции, аппроксимирующей эмпирическую зависимость. Для рядов данных по различным типам ущерба чаще всего используются три, вида функций: нормальная (или гауссовская), экспоненциальная (больцмановская) и самоподобная (функция Парето). Наиболее часто используемой функцией является гауссовское или нормальное распределение. В каноническом виде нормальное распределение случайной величины х записывается следующим образом:
где а,s – параметры распределения; х — размер ущерба; f (x) – плотность распределения вероятности ущерба х. Интегральная функция распределения определяется следующим образом:
где f (х) – функция плотности распределения вероятности. На рис. 4.15 показана также аппроксимация дискретной зависимости «вероятность—ущерб», построенной в интегральной форме, нормальной функцией распределения. Другим типом распределения вероятности ущерба, часто встречающимся в теории природных и техногенных процессов, является распределение Больцмана (экспоненциальное), которое имеет следующий вид:
0 при х < 0 где l - интенсивность потока ущерба. Интегральная функция распределения вероятности Парето имеет следующий вид:
Третьим, характерным в основном для природных рисков, физическим распределением является распределение Парето (или самоподобпое распределение). Функция плотности вероятности распределения ущерба при этом убывает по степенному закону:
0 при х < 1
Интегральная функция распределения вероятности Парето имеет следующий вид:
0 при х < 1
Большинство рисков возникает как результат действия большого числа независимых случайных факторов и поэтому может быть описано нормальным распределением. Данному условию удовлетворяют отказы и аварии технических систем, потери на финансовом рынке, риски ущерба жизни и здоровью и др. Самоподобное распределение характерно для большинства природных катастроф, таких, как землетрясения и наводнения Больцмановское распределение является промежуточным типом между предыдущими двумя.
Дата добавления: 2014-01-06; Просмотров: 1224; Нарушение авторских прав?; Мы поможем в написании вашей работы! |