КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Лекция 2. Основные понятия и определения
Логические основы информатики
В ЭВМ обрабатывается числовая информация, представленная в двоичной системе счисления (0 и 1). Любую схему ЭВМ можно рассматривать как устройство, имеющее n входных сигналов и m выходных. Поступления на входы некоторой последовательности 0 и 1 вызывает появление на выходах вполне определенной последовательности 0 и 1. В ЭВМ различают два больших класса схем: класс комбинационных (логических) схем и класс конечных автоматов. В комбинационных схемах значение выходных сигналов в момент времени t однозначно определяется входными сигналами в тот же момент времени. В конечных автоматах выходные сигналы определяются не только входными сигналами, но и состоянием схемы (конечные автоматы содержат элементы памяти). Построение схем ЭВМ решается с помощью аппарата математической логики. При этом используется только самая простая ее часть – алгебра логики. Основным понятием в той части алгебры логики, на которой основывается ее применение к построению схем ЭВМ, является понятие переключательной функции. Переключательной или булевой функцией называется функция f(x1, ,x2, … xn), способная принимать как и ее аргументы x1, …, xn только два значения 0 или 1. Любая переключательная функция (ПФ) может быть задана таблицей ее значений в зависимости от значений ее аргументов. Такая таблица называется таблицей истинности. Пример. Зададим ПФ трех аргументов f(x1, x2, x3). Так как каждый из аргументов принимает лишь 2 значения, поэтому мы имеем 8 различных комбинаций 3 переменных. Эти комбинации называют набором. Наборы обычно пишут в так называемом естественном порядке, когда наборы принимают значения (000), (001), … Для получения следующего набора прибавляют 1 к правому разряду – применяется как бы сложение чисел. Наборам присваивается номер, равный двоичному числу, соответствующему данному набору. Сопоставляя каждому набору одно из двух значений ПФ, мы и получим таблицу истинности (например, представленную в табл.2.1).
Возьмем какую либо комбинационную схему (КС) (рис.2.1).
Рис.2.1. Комбинационная схема Если значения ПФ отождествить с выходным сигналом КС, а аргументов - с входными сигналами, то ПФ будет описывать процесс преобразования входных сигналов в выходные, т.е. y1 = f1(x1,x2,…,xn); y2 = f2 (x1,x2,…,xn); . ym = fm (x1,x2,…,xn). Любые сложные схемы ЭВМ строятся из простых схем, которые называют логическими элементамиÌ. Логическим элементом называется электронная схема, реализующая элементарную ПФ, имеющая количество входов, равное числу аргументов ПФ и только один выход. При составлении сложных схем используют два приема: последовательное соединение элементов и перестановку входов элементов. Последовательное соединение логических элементов показано на рис.2.2.
Рис.2.2. Последовательное соединение элементов Последовательное соединение двух логических элементов позволяет получить функцию f3 трех аргументов. Подстановка в функцию вместо ее аргументов других функций называется суперпозицией. Перестановка входов элементов показана на рис.2.3. В общем случае функция f4(x1,x2,x3) отличается от функции f3(x1,x2,x3). Замена одних аргументов функции другими или изменение порядка записи аргументов называется подстановкой аргументов.
Рис.2.3. Перестановка входов элементов В алгебре логики доказывается, что из ПФ одного и двух аргументов с помощью операций суперпозиции и подстановки можно получить все ПФ от большого числа аргументов. Практически это означает, что из логических элементов с одним и двумя входами можно построить любую сколь угодно сложную комбинационную схему.
Дата добавления: 2014-01-06; Просмотров: 262; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |