Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Переключательные функции одного и двух переменных

.

Рассмотрим некоторые ПФ одного и двух аргументов. В табл. 2.2 представлены все 4 функции одного аргумента.

Таблица 2.2

x f0(x) f1(x) f2(x) f3(x)
         
         

 

Функция f0 (x) равно нулю (константа нуля), f3(x) равна единице (константа единицы), функция f1(x) повторяет значение аргумента, т.е. f1(x)=x. Наиболее интересной и имеющей важное значение является функция f2(x), которая принимает значения, обратные значению аргумента – логическое отрицание или функция НЕ и обозначается как:

ù х (читается не х).

Все ПФ двух аргументов приведены в табл.2.3.

Таблица 2.3

х1 х2 f0 f1 f2 f3 f4 f5 f6 f7 f8 f9 f10 f11 f12 f13 f14 f15
                                   
                                   
                                   
                                   

 

Функции f0(x1,x2) и f15(x1,x2) не зависят от значений аргументов: f0(x1,x2)=0 и f15(x1,x2)=1. Функции f3(x1,x2), f5(x1, x2), f10(x1,x2) и f12(x1,x2) являются фактически функциями одного аргумента:

f3(x1,x2)=x1, f5(x1,x2)=x2, f10(x1,x2)=x2 и f12(x1,x2)=x1.

Рассмотрим часто встречающиеся ПФ. Функция f1(x1,x2) реализует операцию конъюнкции или логического произведения. Как видим из табл.2.3, функция f1(x1,x2) равна 1, когда и x1 и x2 равны 1. Конъюнкция обозначается как

f1(x1,x2)=x1 & x2 = x1 Ù x2 = x1 x2 (читается x1 и x2).

Функция f7(x1,x2) реализует операцию дизъюнкцию или логического сложения. Функция равна 1, когда или x1 или x2 равны 1. Дизъюнкция обозначается как

f7(x1,x2)=x1 Ú x2.

Функция f14(x1,x2) реализует операцию отрицания конъюнкции. Из табл.2.3 видно, что когда конъюнкция f1(x1,x1) равна 0, то функция f14(x1,x2) равна 1, а если f1(x1, x2) равна1, то f14(x1,x2) равна 0, т.е. f14(x1,x2)=f1(x1,x2). Эта операция получила название “штрих Шеффера” и обозначается различными способами:

 
 

 


Функция f8(x1, x2) реализует операцию отрицания дизъюнкции. По аналогии с функцией отрицания конъюнкции, из табл.2.3 видно, что f8(x1, x2)=f7(x1, x2). Эта операция также получила отдельное название – “стрелка Пирса” и обозначается следующим образом:

       
 
 
   

 


Функция f6(x1, x2) реализует операцию логической неравнозначности или еще ее называют суммой по модулю два. ПФ равна 1, если аргументы x1 и x2 не равны между собой.

Остальные ПФ двух аргументов рассматривать не будем. В действительности, для реализации сколь угодно сложной ПФ не обязательно использовать все 16 ПФ двух аргументов. Можно ограничиться некоторым набором, с помощью которого можно строить любые ПФ.

Система ПФ, из которых с помощью операций суперпозиции и подстановки можно получить любую сколь угодно сложную ПФ, называется функционально полной системой переключательных функций (ФПС ПФ). Существует несколько ФПС ПФ:

- дизъюнкция, конъюнкция и отрицание;

- отрицание конъюнкции;

- отрицание дизъюнкции и другие.

Возникает вопрос, какие ФПС ПФ представляют наибольший практический интерес? Выбор ФПС ПФ с технической точки зрения эквивалентен выбору типов логических элементов, из которых может быть построена любая логическая схема. Оказывается, что наиболее удобной для решения задач синтеза схемы является ФПС ПФ, содержащая дизъюнкцию, конъюнкцию и отрицание.

<== предыдущая лекция | следующая лекция ==>
Лекция 2. Основные понятия и определения | Лекция 3. Преобразования логических выражений
Поделиться с друзьями:


Дата добавления: 2014-01-06; Просмотров: 345; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.012 сек.