КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Плоскость. Плоскость задается тремя произвольными точками, не принадлежащими одной прямой
5.1 Задание плоскости Плоскость задается тремя произвольными точками, не принадлежащими одной прямой. Плоскость в пространстве можно задать: · тремя точками, не лежащими на одной прямой (рисунок 5.1, а); · прямой и не принадлежащей ей точкой (рисунок 5.1, б); · двумя пересекающимися прямыми (рисунок 5.1, в); · двумя параллельными прямыми (рисунок 5.1, г); · любой плоской фигурой (рисунок 5.1, д). Рисунок 5.1 Каждый из перечисленных способов задания плоскости допускает переход к любому другому, т.к. положение прямой в плоскости определяется двумя ее точками или одной точкой и направлением этой прямой. Часто применяется способ задания плоскости с помощью прямых линий (взаимно пересекающихся или параллельных), по которым данная плоскость пересекается с плоскостями проекций П1П2, П3. Кроме этого - это задание плоскости следами, при этом сохраняется наглядность изображения (рисунок 5.2). Рисунок 5.2 5.2 Следы плоскости. Линия пересечения рассматриваемой плоскости с плоскостью проекций (П1, П2, П3 ) называется следом плоскости. Иными словами, след плоскости - это прямая, лежащая в плоскости проекций. Следу присваивается наименование той плоскости проекций, которой он принадлежит. Например, горизонтальный след получен при пересечении заданной плоскости с плоскостью П1 и обозначается , фронтальный — с плоскостью П2 ( ), профильный — с плоскостью П3(). Два следа одной и той же плоскости пересекаются на оси проекции в точке, называемой точкой схода следов. Каждый из следов плоскости совпадает со своей одноименной проекцией, остальные проекции оказываются лежащими на осях. Например, горизонтальный след плоскости Σ(рисунок 5.2) совпадает со своей горизонтальной проекцией , фронтальная его проекция находится на оси х, а профильная на оси у. По расположению следов плоскости можно судить о положении данной плоскости в пространстве относительно плоскостей проекций П1,П2, П3. 5.3 Положение плоскости относительно плоскостей проекций Любая, произвольно взятая в пространстве плоскость, может занимать общее или частное положение. Плоскостью общего положения называется плоскость, которая не перпендикулярна ни к одной из плоскостей проекций (см. рисунок 5.2). Все остальные плоскости (кроме плоскостей проекций) относятся к плоскостям частного положения и подразделяются на проецирующие плоскости и плоскости уровня. |Проецирующей называется плоскость, перпендикулярная к одной Рисунок 5.3
Горизонтальные проекции всех геометрических образов (точек, прямых, фигур), лежащих в этой плоскости, совпадают с горизонтальным следом 1. Угол, который образуется между плоскостями и П2, проецируется на П1 без искажения. Фронтальный след 2 перпендикулярен к оси x. Фронтально-проецирующая плоскость () перпендикулярна к фронтальной плоскости П2 показана на рисунке 5.4. Фронтальные проекции всех геометрических образов (точек, прямых, фигур), лежащих в этой плоскости, совпадают с фронтальным следом плоскости 2. Угол , который образуется между заданной плоскостью и П1, проецируется на П2 без искажения. Горизонтальный след плоскости 1 перпендикулярен к оси x. Рисунок 5.4 Профильно-проецирующая плоскость Т (T1, T2) перпендикулярна к профильной плоскости проекции П3 (рисунок 5.5). Рисунок 5.5
Профильные проекции всех геометрических образов (точек, прямых, фигур), лежащих в этой плоскости, совпадают с профильным следом плоскости Т3. Углы и , которые образуются между заданной плоскостью и плоскостями проекций П1и П2(= T^П1; = Т^П2 ), проецируются на плоскость П3без искажений. Горизонтальный и фронтальный следы плоскости параллельны оси х. Профильно-проецирующая плоскость может проходить через ось x: (рисунок 5.6). Рисунок 5.6 Следы этой плоскости 1 = 2 совпадают друг с другом и с осью x, поэтому не определяют положение плоскости. Необходимо кроме следов задать в плоскости точку (рисунок 5.6). В частном случае эта плоскость может быть биссекторной плоскостью. Угол ° = °, а точка А равноудалена от плоскостей проекций П1и П2. Плоскостью уровня называется плоскость, перпендикулярная одновременно к двум плоскостям проекций и параллельная третьей. Таких плоскостей три разновидности (рисунок 5.7): · горизонтальная плоскость уровня перпендикулярна к П2, П3 и параллельна П 1 (рисунок 5.7, а); · фронтальная плоскость уровня перпендикулярна к П1,П3 и параллельна П2(рисунок 5.7, б); · профильная плоскость уровня перпендикулярна к П1, П2 и параллельна П3(рисунок 5.7 в). Рисунок 5.7 Из определения плоскостей уровня следует, что одна из проекций точки, линии, фигуры, принадлежащих этим плоскостям, будет совпадать с одноименным следом плоскости уровня, а другая проекция будет натуральной величиной этих геометрических образов. 5.4 Признаки принадлежности точки и прямой плоскости Для определения принадлежности точки и прямой плоскости, расположенной в пространстве, следует руководствоваться следующими положениями: · точка принадлежит плоскости, если через нее можно провести линию, лежащую в плоскости; · прямая принадлежит плоскости, если она имеет с плоскостью хотя бы две общие точки; · прямая принадлежит плоскости, если она проходит через точку данной плоскости параллельно прямой, принадлежащей этой плоскости. Через одну точку на плоскости можно провести бесконечное множество линий. Это могут быть произвольные линии и линии, занимающие особое положение по отношению к плоскостям проекций П1 П2, П3. Прямая, принадлежащая рассматриваемой плоскости, проведенная параллельно горизонтальной плоскости проекций, называется г оризонталью плоскости. Прямая, принадлежащая рассматриваемой плоскости, проведенная параллельно фронтальной плоскости проекций, называется фронталью плоскости. Горизонталь и фронталь являются линиями уровня. Горизонталь плоскости следует начинать строить с фронтальной проекции, т.к. она параллельна оси x, горизонтальная проекция горизонтали параллельна горизонтальному следу плоскости. А так как все горизонтали плоскости параллельны между собой, можно считать горизонтальный след плоскости нулевой горизонталью (рисунок 5.8). Фронталь плоскости следует начинать строить с горизонтальной проекции, т.к. она параллельна оси x, фронтальная проекция фронтали параллельна фронтальному следу. Фронтальный след плоскости - нулевая фронталь. Все фронтали плоскости параллельны между собой (рисунок 5.9). Рисунок 5.8
Рисунок 5.9
К линии уровня относится и профильная прямая, лежащая в заданной плоскости и параллельная П3. К главным линиям особого положения в плоскости, кроме линии уровня, относятся линии наибольшего наклона плоскости к плоскости проекций.
5.5 Определение угла наклона плоскости к плоскостям проекций Плоскость общего положения, расположенная в пространстве произвольно, наклонена к плоскостям проекций. Для определения величины двухгранного угла наклона заданной плоскости к какой-либо плоскости проекции используются линии наибольшего наклона плоскости к плоскости проекций: к П1 - линия ската, к П2 - линия наибольшего наклона плоскости к плоскости П2. Линии наибольшего наклона плоскости - это прямые, образующие с плоскостью проекций наибольший угол, проводятся в плоскости перпендикулярно к соответствующей линии уровня. Линии наибольшего наклона и ее соответствующая проекция образуют линейный угол, которым измеряется величина двухгранного угла, составленного данной плоскостью и плоскостью проекций (рисунок 5.10). Рисунок 5.10
Дата добавления: 2014-01-06; Просмотров: 3083; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |