КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Трехслойный персептрон
Трехслойный персептрон является наиболее общим в своем классе сетей и способен формировать произвольные многоугольные невыпуклые многосвязные области. Нейроны первых двух слоев создают произвольные независимые многоугольные решающие области в нужном количестве и в нужных измерениях входного пространства X. Эти области объединяются нейронами третьего слоя в нужной комбинации. Как и для двухслойного персептрона, допускаются операции пересечения и объединения. Весовые коэффициенты могут быть отрицательными, и соответствующая область может входить со знаком минус, что реализует операцию инверсии. Результирующая область может быть открытой. Пример решающей области для жесткой нелинейности в нейронах показан на рис.. Первый и второй слой формируют независимые подобласти S1, S2, S3. Единственный нейрон третьего слоя объединяет их по закону (S 1 Ú S 3) Ù Ø S 2. Весовой коэффициент нейрона в третьем слое, соответствующий подобласти S2, имеет знак " – ", и поэтому перед областью S2 стоит знак отрицания. Проблема функции «исключающее ИЛИ» Наглядной иллюстрацией ограниченности для однослойного персептрона является функция "исключающее ИЛИ". Эта булева функция от двух переменных принимает значение "истина", когда значения входных переменных различны, и "ложь" — в противном случае. Другими словами она принимает значение единицы, когда один из аргументов равен единице (но не оба). Проблему можно проиллюстрировать с помощью однослойной однонейронной системы с двумя входами, показанной на рис. 2.4. Обозначим один вход через х, а другой через у, тогда все их возможные комбинации будут состоять из четырех точек на плоскости х -у, как показано на рис. 2.5. Например, точка х = 0 и у = 0 обозначена на рисунке как точка А0. Рис. 2.4. Однонейронная система Рис. 2.5. Проблема "исключающее ИЛИ" Табл. 2.1 показывает требуемую связь между входами и выходом, где входные комбинации, которые должны давать нулевой выход, помечены А0 и А1, единичный выход – В0 и В1. Таблица 2.1. Таблица истинности для функции "исключающее ИЛИ"
В сети на рис. 2.4 функция F является обычным порогом, так что OUT принимает значение ноль, когда NET меньше 0,5, и единица в случае, когда NET больше или равно 0,5. Нейрон выполняет следующее вычисление: NET = xw 1 + yw 2 (2.1) Никакая комбинация значений двух весов не может дать соотношения между входом и выходом, задаваемого табл. 2.1. Чтобы понять это ограничение, зафиксируем NET на величине порога 0,5. Сеть в этом случае описывается уравнением (2.2). xw 1 + yw 2 = 0,5 (2.2) Это уравнение линейно по х и у, т. е. все значения по х и у, удовлетворяющие этому уравнению, будут лежать на некоторой прямой в плоскости х-у. Любые входные значения для х и у на этой линии будут давать пороговое значение 0,5 для NET. Входные значения с одной стороны прямой обеспечат значения NET больше порога, следовательно, OUT=1. Входные значения по другую сторону прямой обеспечат значения NET меньше порогового значения, делая OUT равным 0. Изменения значений w 1, w 2 и порога будут менять наклон и положение прямой. Для того чтобы сеть реализовала функцию "исключающее ИЛИ", заданную табл. 2.1, нужно расположить прямую так, чтобы точки А были с одной стороны прямой, а точки В – с другой. Попытавшись нарисовать такую прямую на рис. 2.5, убеждаемся, что это невозможно. Это означает, что какие бы значения ни приписывались весам и порогу, сеть неспособна воспроизвести соотношение между входом и выходом, требуемое для представления функции "исключающее ИЛИ".
Дата добавления: 2014-01-06; Просмотров: 1154; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |