Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Эффективность IP-телефонии




Как уже отмечалось ранее, привлекательность всех алгоритмов сценария «телефон-телефон» для пользователя заключается в значительно более низких, по сравнению с обычной междугородной или международной телефонной связью, тарифах, что является следствием применения технологий, обеспечивающих вторичное уплотнение телефонных каналов. Поэтому многие пользователи согласны терпеть снижение качества передачи речи.

Предоставление телефонных услуг через инфраструктуру IP позволяет поставщику услуг IP получать большую, по сравнению с традиционными операторами, прибыль благодаря тому, что:

• функции предоставления услуг телефонии и передачи данных объединяются в общей инфраструктуре IP; основной объём обслуживаемого трафика приходится на традиционные данные Интернет, а транспортировка относительно невысокого объёма трафика IP-телефонии может осуществляться с использованием той же инфраструктуры при очень незначительных дополнительных затратах,

• отсутствует необходимость обеспечивать качество и объём услуг, требуемые от операторов ТфОП, что допускает реализацию услуг IP-телефонии на базе более дешёвого оборудования.

Для традиционных телефонных операторов IP-телефония также достаточно перспективна. Операторы ТфОП в США и Европе вкладывают значительные средства в создание развитой инфраструктуры IP и в привлечение на свою сторону поставщиков услуг Интернет.

Так, например, компания US West Inc. (Инглвуд, Колорадо) объявила о проекте реализации технологии xDSL в масштабе всей страны, компания Worldcom Inc. (Джексон, Миссисипи) уже владеет первым поставщиком услуг Интернет - Uunet Technologies Inc. (Фоллс Черч, Виргиния) - и намеревается приобрести фирму MCI Communications Corp. (Вашингтон, округ Колумбия).

Но мотивы такой тенденции не только в сокращении затрат на обслуживание трафика. В настоящее время минута телефонного разговора по сетям коммутации каналов внутри США обходится местной телефонной компании примерно в 6 центов, а передача речи по Интернет стоит от 1 до 2 центов за минуту. Такая разница вряд ли достаточна для того, чтобы радикально перестроить инфраструктуру дальней связи, использующую технологию 1980-х годов, но потребовавшую в свое время многомиллиардных затрат на цифровизацию сети. В свете этого, сегодняшняя ситуация с расценками на междугородную и международную телефонную связь кратковременна и в ближайшее время перестанет быть столь же важной причиной развития IP-телефонии, как это имело место на начальной стадии ее внедрения. Стратегические преимущества новой технологии заключаются в конвергенции услуг, в создании интегрированных приложений в конечных узлах. Контролируя технологии коммутации каналов и пакетов, можно приобрести гигантское преимущество (во всемирном масштабе) при вступлении в следующее столетие.

Тем не менее, эффективность IP-телефонии ограничивается сегодня неустойчивыми и непредсказуемыми уровнями задержки на передачу пакетов. Другими словами, IP-телефония представляет собой пример классического проектного компромисса между стоимостью и характеристиками качества. Разумеется, в будущем компромисное решение будет другим, и некоторые способы его оптимизации ясны уже сейчас.

В этом направлении ведется разработка оборудования следующего поколения. Шлюзы (маршрутизаторы) располагаются только на краях сети, где должны приниматься наиболее часто сложные решения и где должны вызываться наиболее используемые процессы, а далее развертываются высокоскоростные коммутаторы ATM, причем, в соответствии с проектными спецификациями, маршрутизаторы и коммутаторы смогут работать со скоростью 1 Тбит/с. Если к этому добавить невероятно высокоскоростные системы оптоволоконной передачи в сети, то перспектива представляется весьма оптимистичной. Каждое оптическое волокно в настоящее время может поддерживать не менее 32 световых волн (оптических частот), причем каждая запускается на скорости не менее 10 Гбит/с и поддерживает приблизительно 130,000 каналов передачи речевой информации при стандартных скоростях 64 кбит/с. Вдоль маршрута укладываются сотни оптических волокон.

Кроме того, будет предусматриваться фиксация маршрутов от каждого шлюза к каждому из остальных шлюзов, чтобы все пакеты от шлюза N к шлюзу М направлялись по тому же самому маршруту.

Стала очевидной также избыточность традиционной передачи речевой информации со скоростью 64 Кбит/с. Современные алгоритмы сжатия позволяют использовать для передачи речи полосу пропускания 5,3 Кбит/с. По мере уменьшения требований к ширине полосы возрастает производительность, за тот же период времени по тем же каналам и через те же коммутаторы передается больше данных, и цены на телефонные разговоры снижаются. Соответствующие стандарты сжатия речи были разработаны уже в середине 90-х гг.

Это - рекомендация G.729, которая предусматривает 8-кратное сжатие речевого сигнала, что дает возможность передавать его в полосе 8 Кбит/с с тем качеством, которое поддерживают обычные телефонные сети. В основу стандарта положен алгоритм сжатия CS-ACELP. Последняя его версия, G.729A, использует тот же алгоритм, но упрощенный кодек, что значительно снижает нагрузку на процессор при обработке речевого потока.

Другая рекомендация - G.723.1 - позволяет сжимать речевой сигнал в 12 раз и транспортировать его со скоростью 5,3 или 6,3 Кбит/с. При этом качество передачи речи немного снижается, но остается вполне достаточным для делового общения. Для сжатия полосы до 5,3 Кбит/с применяется алгоритм ACELP, а до 6,3 Кбит/с - алгоритм MP-MLQ.

Общее правило гласит, что более «плотное» сжатие приводит к снижению качества речи, однако разработка все более сложных алгоритмов компрессии делает это правило спорным. Выбор алгоритма обуславливается тремя основными факторами - распространенностью, поддержкой в имеющемся оборудовании и ожиданиями пользователей. На нынешнем этапе оба алгоритма хорошо себя показали и приняты производителями средств пакетной телефонии.

Отметим, что устройства, поддерживающие G.723.1, не могут «разговаривать» напрямую с устройствами на основе G.729; для их взаимодействия необходим специальный конвертер. Сигнальный процессор DSP, реализующий эти функции, может вносить задержки и искажения, снижающие качество речи до неприемлемого уровня. Кроме того, современные технологии неспособны, производить такое преобразование в реальном времени.

 




Поделиться с друзьями:


Дата добавления: 2014-01-06; Просмотров: 697; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.008 сек.