Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Химические свойства и переработка




Физические свойства

 

Физические свойства некоторых циклоалканов, часто встречающихся в нефтях, приведены в табл. 6.

Из таблицы видно, что циклоалканы имеют более высокие температуры кипения и плавления, чем соответствующие алканы. Объясняется это тем, что вследствие более жёсткой структуры молекулы циклоалканов плотнее упаковываются в жидком или твёрдом состоянии, что увеличивает силы межмолекулярного взаимодействия.

Наличие одного алкильного заместителя в структуре циклоалкана нарушает симметрию молекулы, что приводит к резкому уменьшению температуры плавления.

На температуру кипения оказывает влияние расположение заместителей. Циклоалканы, имеющие заместители у соседних атомов углерода в цикле, кипят при более высокой температуре

Температуры плавления моноалкилзамещённых циклоалканов намного ниже, чем у соответствующих алканов.

С увеличением числа и длины алкильных заместителей физические свойства циклоалканов приближаются к свойствам алканов.

 

По химическим свойствам циклоалканы близки к алканам. Они весьма устойчивы к действию самых разнообразных реагентов и в химические реакции вступают только в очень жёстких условиях или в присутствии активных катализаторов. Однако циклоалканы всё же легче, чем алканы, взаимодействуют с серной и азотной кислотами. В присутствии катализаторов (платины, палладия и никеля) шестичленные цикланы дегидрируются в соответствующие ароматические углеводороды (реакция Зелинского):

Эти реакции послужили основой для создания промышленного процесса каталитического риформинга (платформинга), с помощью которого получают ароматические углеводороды ряда бензола, широко используемые как высокооктановые компоненты к бензинам и сырьё для нефтехимического синтеза. При риформинге нефтяных фракций содержащиеся в них циклопентановые углеводороды изомеризуются в циклогексановые с последующим дегидрированием в ароматические углеводороды. Эта же реакция легко протекает в присутствии хлористого алюминия:

 

Таблица 6

Физические свойства некоторых циклоалканов

Название Структурная формула Температура плавления, 0С Температура кипения, 0С Плотность Ρ204
Циклопентан -94,4 49,3 0,7454
Метилциклопентан -142,7 71,8 0,7488
Этилциклопентан -138,4 103,4 0,7657
1,1-диметилциклопентан -69,7 87,8 0,7523
цис-1,2-диметилциклопентан -53,8 99,5 0,7723
транс-1,2-диметилциклопентан -117,6 91,9 0,7519
Пропилциклопентан -120,3 130,8 0,7756
Бутилциклопентан -108,2 156,8 0,7843
Изопентилциклопентан - 169,0 0,4840
Циклогексан   6,6 80,9 0,7781
Метилциклогексан -126,6 100,8 0,7692
Этилциклогексан -114,4 132,0 0,7772
1,1-диметилциклогексан -33,5 119,5 0,7840
цис-1,2-диметилциклогексан -50,1 128,0 0,7965
транс-1,2-диметилциклогексан -89,4 125,0 0,7760
Пропилциклогексан -94,5 154,7 0,7932
Бутилциклогексан -78,6 179,0 0,7997
Пентилциклогексан - 204,0 0,8040

 

Циклогексаны, так же как и алканы, окисляются с трудом, образуя дикарбоновые кислоты или продукты окисления без разрыва кольца. Так в присутствии сильных окислителей (KMnO4, H2SO4, HNO3 и др.) при 100 0С из пяти- и шестичленных циклов образуются дикарбоновые кислоты:

 

 

Дикарбоновые кислоты широко применяются в нефтехимическом синтезе. В частности, на их основе получают полиэфирные и полиамидные волокна.

В более лёгких условиях окисления циклоалканы окисляются без разрыва цикла. При этом в зависимости от условий из циклогексана могут быть получены спирт (циклогексанол) или кетон (циклогексанон):

Циклогексанол применяют как растворитель для полимеров, а циклогексанон - в производстве капролактама. Капролактам используется для получения полиамидного волокна - капрона.




Поделиться с друзьями:


Дата добавления: 2014-01-06; Просмотров: 1282; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.089 сек.