КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Кинетическая энергия вращательного движения. Момент инерции
Если дело вращается вокруг неподвижной оси, то его кинетическая энергия равна: (Рис. 4.2.) Используя формулу (4.4), получим где и - расстояние i-частицы тела до оси вращения; - её масса. Величина, стоящая в скобках, не зависит от скорости движения тела и характеризует инерционные свойства тела во вращательном движении: чем больше эта величина, тем большую энергию надо затратить для достижения данной скорости. Эта величина, характеризующая твердое тело, а также выбранную, ось вращения, называется моментом инерции тала относительно данной оси . Тогда кинетическую энергию можно записать в виде: (4.9) Момент инерции тела вычисляют по формуле: (4.10) Для материальной точки, вращающейся вокруг оси, ; для шара, вращающегося вокруг оси, проходящей через его центр, .Полная кинетическая энергия катящегося тела вычисляется по формуле: (4.11) Если известен момент инерции относительно оси, проходя через центр инерции тела , можно вычислить момент инерция относительно параллельной оси (теорема Штейнера): , (4.12) где - масса тела, - расстояние между осями (Рис. 4.3).
Дата добавления: 2014-01-06; Просмотров: 394; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |