КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Плотность тока термоавтоэмиссии (продолжение)
В § 5 мы детально исследовали распределение электронов эмиссии по энергиям. Эти результаты позволят нам вычислить величину плотности тока термоавтоэмиссии, поскольку функция распределения электронов эмиссии является подынтегральным выражением в соответствующей формуле для плотности тока. Вычисления удобно проводить в NED-представлении. Как и в § 5, рассмотрим два случая. 1. ЕТ эмиссия Подставляя (5.5) в (4.3), получаем . (6.1) Замена переменной (6.2) и условие позволяет переписать выражение (6.1) в виде . (6.3) Интеграл в (6.3) равен . (6.4) Подставляя (6.4) в (6.1) и делая несложные преобразования, окончательно для j получаем . (6.5) Величина (6.6) носит название плотность тока автоэмиссии или плотность тока Фаулера-Нордгейма, по имени исследователей, впервые рассмотревших задачу об автоэлектронной эмиссии. Формула (6.5) с учетом влияния конечной температуры впервые была получена Мерфи и Гудом. Перепишем формулу (6.6), подставляя в нее выражения для а и Т 1 согласно (5.2) и (5.3) . (6.7) В этом выражении обращает на себя внимание очень резкая, экспоненциальная, зависимость плотности тока автоэмиссии от напряженности электрического поля Е и работы выхода j. Это обстоятельство, как мы увидим ниже, играет определяющую роль в целом ряде физических явлений, в которых имеет место автоэлектронная эмиссия. В эмиссионной электронике используется смешанная система единиц, в которой плотность тока исчисляется в А/см2, работа выхода в эВ, напряженность электрического поля в В/см. Если принять, что эффективная масса электрона m равна массе свободного электрона, то можно записать расчетные формулы для термоавтоэмиссии (6.8) и . (6.9) В формуле (6.9) температура инверсии Т 1 получается в градусах Кельвина. 2. ТЕ эмиссия Подставляя (5.15) в формулу (4.3), получаем . (6.10) Делая замену переменных: (6.11) и учитывая, что , переписываем (6.10) в виде . (6.12) Интеграл равен ; . (6.13) Подставляя (6.13) в (6.12), учитывая определения работы выхода (2.8) и эффекта Шоттки (2.11), окончательно получаем . (6.14) Величина (6.15) носит название плотности тока термоэмиссии с поправкой Шоттки или плотности тока Ричардсона-Шоттки. В отсутствие электрического поля формула (6.15) описывает термоэмиссию или испарение электронов. Формула (6.14) с дополнительным множителем, учитывающим влияние электрического поля, была получена впервые Мерфи и Гудом. Если принять эффективную массу равной массе свободного электрона, то расчетные формулы, описывающие ТЕ эмиссию, выглядят следующим образом , (6.16) . (6.17)
Дата добавления: 2014-01-06; Просмотров: 268; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |