Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Плотность тока термоавтоэмиссии (продолжение)

В § 5 мы детально исследовали распределение электронов эмиссии по энергиям. Эти результаты позволят нам вычислить величину плотности тока термоавтоэмиссии, поскольку функция распределения электронов эмиссии является подынтегральным выражением в соответствующей формуле для плотности тока. Вычисления удобно проводить в NED-представлении. Как и в § 5, рассмотрим два случая.

1. ЕТ эмиссия

Подставляя (5.5) в (4.3), получаем

. (6.1)

Замена переменной

(6.2)

и условие позволяет переписать выражение (6.1) в виде

. (6.3)

Интеграл в (6.3) равен

. (6.4)

Подставляя (6.4) в (6.1) и делая несложные преобразования, окончательно для j получаем

. (6.5)

Величина

(6.6)

носит название плотность тока автоэмиссии или плотность тока Фаулера-Нордгейма, по имени исследователей, впервые рассмотревших задачу об автоэлектронной эмиссии. Формула (6.5) с учетом влияния конечной температуры впервые была получена Мерфи и Гудом.

Перепишем формулу (6.6), подставляя в нее выражения для а и Т 1 согласно (5.2) и (5.3)

. (6.7)

В этом выражении обращает на себя внимание очень резкая, экспоненциальная, зависимость плотности тока автоэмиссии от напряженности электрического поля Е и работы выхода j. Это обстоятельство, как мы увидим ниже, играет определяющую роль в целом ряде физических явлений, в которых имеет место автоэлектронная эмиссия.

В эмиссионной электронике используется смешанная система единиц, в которой плотность тока исчисляется в А/см2, работа выхода в эВ, напряженность электрического поля в В/см. Если принять, что эффективная масса электрона m равна массе свободного электрона, то можно записать расчетные формулы для термоавтоэмиссии

(6.8)

и

. (6.9)

В формуле (6.9) температура инверсии Т 1 получается в градусах Кельвина.

2. ТЕ эмиссия

Подставляя (5.15) в формулу (4.3), получаем

. (6.10)

Делая замену переменных:

(6.11)

и учитывая, что , переписываем (6.10) в виде

. (6.12)

Интеграл равен

; . (6.13)

Подставляя (6.13) в (6.12), учитывая определения работы выхода (2.8) и эффекта Шоттки (2.11), окончательно получаем

. (6.14)

Величина

(6.15)

носит название плотности тока термоэмиссии с поправкой Шоттки или плотности тока Ричардсона-Шоттки. В отсутствие электрического поля формула (6.15) описывает термоэмиссию или испарение электронов. Формула (6.14) с дополнительным множителем, учитывающим влияние электрического поля, была получена впервые Мерфи и Гудом.

Если принять эффективную массу равной массе свободного электрона, то расчетные формулы, описывающие ТЕ эмиссию, выглядят следующим образом

, (6.16)

. (6.17)

<== предыдущая лекция | следующая лекция ==>
Энергетические распределения эмитированных электронов | Плотность потока энергии через эмиссионную поверхность
Поделиться с друзьями:


Дата добавления: 2014-01-06; Просмотров: 268; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.011 сек.