КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Вращательное движение материальной точки
Различают два вида вращательного движения материальной точки: – вращательное движение вокруг неподвижной оси – это движение материальной точки по окружности радиуса R, центр которой лежит на неподвижной относительно данной системы отсчета прямой (ось вращения), перпендикулярной плоскости, в которой лежит траектория точки (рис. 1.6а); – вращательное движение около неподвижной точки – это движение материальной точки по поверхности сферы радиуса R, центр которой лежит в некоторой неподвижной относительно данной системы точке О (рис. 1.6б).
Для характеристики вращательного движения вводят угловые кинематические величины: угол поворота; угловую скорость; угловое ускорение. Пусть материальная точка вращается по окружности радиуса R с центром в точке С (рис. 1.7). Положение материальной точки на окружности в произволь-
Этому соотношению можно придать векторную форму, если ввести вектор – вектор угла поворота, направление которого связано с направлением вращения материальной точки определенным правилом. Условились для определения этой связи применять правило правого винта: вектор направлять по мгновенной оси вращения в ту сторону, куда будет двигаться винт с правой нарезкой, при вращении его головки в сторону вращения материальной точки (рис 1.7). Теперь . (1.27) Здесь и ниже скобками [ ] обозначено векторное произведение векторов. Следует отметить, что из-за условности выбора направления угла поворота свойства этого вектора (и ему подобных) существенным образом отличаются от обычных векторов. Поэтому их называют псевдовекторами или аксиальными векторами. В частности последовательные бесконечно малые повороты, характеризуемые векторами и, при их сложении дают результирующий поворот , равный , то есть подчиняются обычному правилу сложения векторов. Для поворотов, характеризуемых конечными углами и , их геометрическая сумма не равна результирующему повороту , то есть . Более того, из наглядного примера (см. рис. 1.8) видно, что .
Рис. 1.8
Скорость поворота характеризуется с помощью понятия угловой скорости в данный момент времени t (мгновенной угловой скорости): . (1.28) Вектор мгновенной угловой скорости ориентирован так же, как и , вдоль мгновенной оси вращения, и связан правилом правого винта с направлением вращения в данный момент времени. Поэтому является аксиальным вектором (рис. 1.9а,б). При вращении вокруг неподвижной оси вектор направлен вдоль этой оси. При вращении вокруг неподвижной точки изменяет
ляется направлением в данный момент времени. При вращении материальной точки вокруг неподвижной оси угловое ускорение направлено вдоль этой оси.
Выводы: При вращении материальной точки ее движение может описываться с помощью угловых кинематических величин: угла поворота , угловой скорости и углового ускорения , которые являются аксиальными векторами. При вращении вокруг неподвижной оси , и направлены вдоль этой оси. При вращении вокруг неподвижной точки и направлены вдоль мгновенной оси вращения, а сонаправлен с приращением в данный момент времени. Контрольные вопросы 1.9. Каков смысл вектора в соотношении (1.27), если ось вращения изменяет с течением времени свою ориентацию? 1.10. Охарактеризуйте вращательное движение материальной точки, соответствующее условиям: а) ; б) ; в) ; г) , .
Дата добавления: 2014-01-06; Просмотров: 2001; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |