КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Персональные компьютеры
Классификация ЭВМ по размерам и функциональным возможностям Классификация ЭВМ по назначению Классификация ЭВМ по этапам создания Классификация ЭВМ по принципу действия Классификация ЭВМ Введение в информатику Информатика – наука об общих свойствах и структуре научной информации, закономерностях ее создания, хранения, преобразования, передачи и использования. Информатика включает в себя 7 основных направлений: 1. Теоретическая информатика – это математическая дисциплина, использующая все методы математики и создающая теоретический фундамент, на котором основываются все остальные направления информатики. 2. Прикладная информатика рассматривает различные области применения информатики в практике научных исследований, создание новых изделий и технологий, в управлении, обучении и разработки информационных систем. 3. Кибернетика – это наука об общих закономерностях процессов управления и передачи информации в объектах различной природы – в машинах, в живых организмах и в обществе. 4. Вычислительная математика – раздел математики, который изучает аналитические и численные методы обработки научной и технической информации. 5. Вычислительная техника – это направление информатики, в котором разрабатываются новые вычислительные машины и их структуры, изучаются новые принципы работы таких машин, создается новая элементная база, проектируются территориально разнесенные комплексы и сети обработки данных. 6. Программирование – это изложение алгоритмов экономических, научно-технических, лингвистических и прочих задач на языках программирования, ориентированных под математическое и программное обеспечение конкретного компьютера. Программирование в широком смысле включает создание языков программирования, создание операционных систем, разработку пакетов прикладных программ, создание базы данных. 7. Искусственный интеллект – одно из направлений информатики, цель которого разработка аппаратно-программных средств, позволяющих пользователю непрограммисту ставить и решать свои задачи, традиционно считающиеся интеллектуальными, общаясь с ЭВМ на ограниченном подмножестве естественного языка.
Электронная вычислительная машина, компьютер – комплекс технических средств, предназначенных для автоматической обработки информации в процессе решения вычислительных и информационных задач. По принципу действия вычислительные машины делится на три больших класса: аналоговые (АВМ), цифровые (ЦВМ), гибридные (ГВМ). ЦВМ – вычислительные машины дискретного действия, работают с информацией, представленной в дискретной, а точнее, в цифровой форме. АВМ – вычислительные машины прорывного действия, работают c информацией, представленной в прерывной (аналоговой) форме, т.е. в виде непрерывного ряда значений какой-либо физической величины (чаще всего электрического напряжения). Аналоговые вычислительные машины просты и удобны в эксплуатации; программирование задач для решения на них, как правило, нетрудоемкое; скорость решения задач изменяется по желанию оператора и может быть сделана сколь угодно большой (больше чем, у ЦВМ), но точность решения задач очень низкая (относительная погрешность 2-5%). На АВМ наиболее эффективно решать математические задачи, содержащие дифференциальные уравнения, не требующие сложной логики. ГВМ – вычислительные машины комбинированного действия, работают с информацией, представленной и в цифровой и аналоговой форме; они совмещают в себе достоинства АВМ и ЦВМ. ГВМ целесообразно использовать для решения задач управления сложными быстродействующими техническими комплексами.
По этапам создания и используемой элементной базе ЭВМ условно делятся на поколения: 1-е поколение, 50-е гг.: ЭВМ на электронных вакуумных лампах; 2-е поколение, 60-е гг.: ЭВМ на дискретных полупроводниковых приборах (транзисторах); 3-е поколение, 70-е гг.: ЭВМ на проводниковых интегральных схемах с малой и средней степенью интеграции; Примечание: интегральная схема - электронная схема специального назначения, выполненная в виде единого полупроводникового кристалла6 объединяющего большое число диодов и транзисторов. 4-е поколение, 80-е гг.: ЭВМ на больших и сверхбольших интегральных схемах – микропроцессорах (десятки тысяч – миллионы транзисторов в одном кристалле); 5-е поколение, 90-е гг.: ЭВМ на сверхсложных микропроцессорах с параллельно – векторной структурой, одновременно выполняющих десятки последовательных команд программы; 6-е и последующие поколения: оптоэлектронные ЭВМ с массовым параллелизмом и нейтронной структурой – с распределенной сетью большого числа (десятки тысяч) несложных микропроцессоров, моделирующих архитектуру нейронных биологических систем. Каждое последующее поколение ЭВМ имеет по сравнению с предшествующим существенно лучшие характеристики. Так, производительность ЭВМ и емкость всех запоминающих устройств увеличиваются, как правило, больше чем на порядок.
По назначению ЭВМ можно разделить на три группы: универсальные (общего назначения), проблемно-ориентированные и специализированные. Универсальные ЭВМ предназначены для решения самых различных инженерно-технических задач: экономических, математических, информационных и других задач, отличающихся сложностью алгоритмов и большим объемом обрабатываемых данных. Они широко используются в вычислительных центрах коллективного пользования и в других мощных вычислительных комплексах. Проблемно-ориентированные ЭВМ служат для решения более узкого круга задач, связанных, как правило, с управлением технологическими объектами; регистрацией, накоплением и обработкой относительно небольших объемов данных; выполнением расчетов по относительно несложным алгоритмам; они обладают ограниченными по сравнению с универсальными ЭВМ аппаратными и программными ресурсами. Специализированные ЭВМ используются для решения узкого круга задач или реализации строго определенной группы функций. Такая узкая ориентация ЭВМ позволяет четко специализировать их структуру, существенно снизить их сложность и стоимость при сохранении высокой производительности и надежности их работы. К специализированным ЭВМ можно отнести, например, программируемые микропроцессоры специального назначения; адаптеры и контроллеры, выполняющие логические функции управления отдельными несложными техническими устройствами; устройства согласования и сопряжения работы узлов вычислительных систем.
По размерам и функциональным возможностям ЭВМ можно разделить на сверхбольшие (суперЭВМ), большие, малые, сверхмалые (микроЭВМ). Приведем некоторые сравнительные параметры названных классов современных ЭВМ.
MIPS – миллион команд над числами с фиксированной запятой в секунду. Исторически первыми появились большие ЭВМ, элементарная база которых прошла путь от электронных ламп до интегральных схем со сверхвысокой степенью интеграции. Производительность больших ЭВМ оказалась недостаточной для решения задач: прогнозирования метеообстановки, управления сложными оборонными комплексами, моделирования экологических систем и др. Это явилось предпосылкой для разработки и создания суперЭВМ, самых мощных вычислительных систем, интенсивно развивающихся и в настоящее время. Появление в 70-х гг. малых ЭВМ обусловлено, с одной стороны, прогрессом в области электронной элементной базы, а с другой – избыточностью ресурсов больших ЭВМ для ряда приложений. Малые ЭВМ используются чаще всего для управления технологическими процессами. Они более компактны и значительно дешевле больших ЭВМ. Изобретение в 1969 г. микропроцессора (МП) привело к появлению в 70-х гг. еще одного класса ЭВМ – микроЭВМ. Именно наличие МП служило первоначально определяющим признаком микроЭВМ. Сейчас микропроцессоры используются во всех без исключения классах ЭВМ. Приведем классификацию микроЭВМ:
Многопользовательские микроЭВМ – это мощные микроЭВМ, оборудованные несколькими видеотерминалами и функционирующие в режиме разделения времени, что позволяет эффективно работать на них сразу нескольким пользователям. Персональные компьютеры – однопользовательские микроЭВМ, удовлетворяющие требованиям общедоступности и универсальности применения. Рабочие станции представляют собой однопользовательские мощные микроЭВМ, специализированные для выполнения определенного вида работ (графических, инженерных, издательских и др.). Серверы – многопользовательские мощные микроЭВМ в вычислительных сетях, выделенные для обработки запросов от всех станций сети. Вышеприведенная классификация весьма условна, ибо мощная современная ПК, оснащенная проблемно-ориентированным программным и аппаратным обеспечением, может использоваться и как рабочая станция, и как многопользовательская микроЭВМ, и как хороший сервер, по своим характеристикам почти не уступающий малым ЭВМ.
Персональные компьютеры можно классифицировать по ряду признаков. По поколениям персональные компьютеры делятся следующим образом: · ПК 1-го поколения – используют 8-битные микропроцессоры; · ПК 2-го поколения – используют 16-битные микропроцессоры; · ПК 3-го поколения - используют 32-битные микропроцессоры; · ПК 4-го поколения - используют 64-битные микропроцессоры; По конструктивным особенностям ПК делятся следующим образом: Рассмотрим переносные ПК. Большинство переносных компьютеров имеют автономное питание от аккумуляторов, но могут подключаться и к сети. В качестве видеомониторов у них применяются плоские с видеопроектором жидкокристаллические дисплеи, реже – люминесцентные для презентаций или газоразрядные. Клавиатура чаще всего чуть укорочена 84 – 86 клавиш (вместо 101 у персональных ПК), но может иметься разъем для подключения и полной клавиатуры; у некоторых моделей клавиатура раскладная. В качестве манипулятора (устройства указания) обычно используется не мышь, а трекбол, трекпойнт или трекпад. Трекбол – пластмассовый шар диаметром 15 – 20 мм, вращающийся по любому направлению (напоминающий стационарно укрепленную перевернутую мышь). Трекпойнт – специальная гибкая клавиша на клавиатуре типа ластика, прогиб которой в нужном направлении перемещает курсор на экране дисплея. Трекпад – небольшой планшет, размещенный на блоке клавиатуры и содержащий под тонкой пленкой сеть проводников, воспринимающих при легком нажиме направление перемещения нажимающего объекта, например пальца. Применяются в переносных компьютерах и сенсорные экраны, в которых прикосновение к их поверхности обуславливает перемещение курсора в место прикосновения или выбор процедуры по меню, выведенному на экран. Рассмотрим кратко некоторые типы переносных ПК и приведем их характеристики. Портативные рабочие станции – наиболее мощные и крупные переносные ПК. Они оформляются часто в виде чемодана и носят жаргонное название Nomadic – кочевник. По существу, это обычные рабочие станции, питающиеся от сети, но конструктивно оформленные в корпусе, удобном для переноса и имеющие, как и все переносные ПК, плоский жидкокристаллический видеомонитор. Nomadic обычно имеют модемы и могут оперативно подключаться к каналам связи для работы в вычислительной сети. Портативные (наколенные) компьютеры типа «Lap Top» оформляются в виде небольших чемоданчиков размером с «дипломат». Аппаратное и программное обеспечение позволяет им успешно конкурировать с лучшими стационарными ПК. Компьютеры – блокноты (Note Book и Sub Note Book) выполняют все функции настольных ПК. Конструктивно они оформлены в виде миниатюрного чемоданчика (иногда со съемной крышкой) размером с небольшую книгу. По своим характеристикам во многом совпадает с Lap Top, отличаясь от них лишь размерами и несколько меньшими объемами оперативной и дисковой памяти. Вместо винчестера некоторые модели имеют энергонезависимую Flash – память емкостью 10 – 20 Мбайт. Многие модели компьютеров – блокнотов имеют модемы для подключения к каналам связи и соответственно к вычислительной сети. Некоторые из них для дистанционного беспроводного обмена информацией с другими компьютерами оборудованы радиомодемами и оптоэлектронными инфракрасными портами. Последние обеспечивают лишь межкомпьютерную связь на расстоянии нескольких десятков метров и в пределах прямой видимости. Питание Note Book осуществляется от портативных аккумуляторов, обеспечивающих автономную работу в течение 3 – 4 часов. Карманные компьютеры (Palm Top, что означает «наладонные»). Это полноправные ПК, имеющие микропроцессор, оперативную и постоянную память, обычно монохромный жидкокристаллический дисплей, портативную клавиатуру, порт – разъем для подключения в целях обмена информацией к стационарному ПК. Электронные секретари (PDA – Personal Digital Assistent) имеют формат карманного компьютера, по более широкие функциональные возможности, нежели Palm Top (в частности: аппаратное и встроенное программное обеспечение, ориентированное на организацию электронных справочников, хранящих имена, адреса и номера телефонов и т.п.), встроенные текстовые, а иногда и графические редакторы, электронные таблицы. Большинство PDA имеют модемы и могут обмениваться информацией с другими ПК, а при подключении к вычислительной сети могут получать и отправлять электронную почту и факсы. Электронные записные книжки (органайзеры) относятся к «легчайшей категории» портативных компьютеров (к этой категории кроме них относятся калькуляторы, электронные переводчики и др.). Органайзеры пользователем не программируются, но содержат вместительную память, в которую можно записать необходимую информацию и отредактировать её с помощью встроенного текстового редактора. В органайзер встроен внутренний таймер. Есть защита информации от несанкционированного доступа, обычно по паролю. Большинство органайзеров не русифицированы, а программную русификацию сделать невозможно. Приведем сравнительные характеристики переносных компьютеров.
Дата добавления: 2014-01-06; Просмотров: 1706; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |