КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Теорема Бернулли
Пусть производится независимых испытаний, в каждом из которых вероятность появления события равна . Можно ли предвидеть, какова примерно будет относительная частота появлений события? На этот вопрос дал положительный ответ Яков Бернулли (1713 год). Теорема Бернулли. Если в каждом из независимых испытаний вероятность появления события постоянна, то как угодно близка к единице вероятность того, что отклонение относительной частоты от вероятности по абсолютной величине будет сколь угодно малым, если число испытаний достаточно велико. Другими словами, если - сколь угодно малое положительное число, то при соблюдении условий теоремы имеет место равенство . Доказательство. Пусть числа появлений события в испытаниях. Каждая из величин может принять лишь два значения: 1 (событие наступило) с вероятностью и 0 (событие не появилось) с вероятностью . Случайные величины попарно независимы, т.к. испытания независимы. Дисперсия любой величины , равна произведению так как , то произведение не превышает и, следовательно, дисперсии всех случайных величин ограничены числом , т.е. . Следовательно, к случайным величинам можно применить теорему Чебышева (частный случай). При этом будем иметь . Принимая во внимание, что математическое ожидание каждой из величин (т.е. математическое ожидание числа появлений события в одном испытании) равно вероятности наступления события, получим . Покажем, что дробь равна относительной частоте появлений события в испытаниях. Каждая из величин при появлении события в соответствующем испытании принимает значение, равное единице; следовательно, сумма равна числу появлений события в испытаниях, значит Учитывая это равенство, получим . Теорема Бернулли утверждает, что при относительная частота при достаточно большом числе испытаний обладает свойством устойчивости и оправдывает статистическое определение вероятности. Коротко теорему Бернулли записывают так: при (закон больших чисел).
Глава 10. Функция распределения вероятностей случайной величины
Дата добавления: 2014-01-06; Просмотров: 1893; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |