Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Свойства четных и нечетных функций

Разложение в ряд Фурье четных и нечетных функций.

1) произведение четных функций – четная функция. Произведение нечетных функций – четная функция, произведение четной функции на нечетную – нечетная функция.

Обозначим - нечетную и четную функции. ,

Получим, ,

.

2)

.

 

Рассмотрим формулы разложения функции , заданной на отрезке в ряд Фурье

 

, , .

= (в точках непрерывности функции).

В точках разрыва функции .

Если функция четна, то по четности косинуса, нечетности синуса и свойству 1 под интегральные функции в . Следовательно,

 

, , .

= (в точках непрерывности функции). Четная функция разлагается по четным функциям.

 

Если функция нечетна, то по четности косинуса, нечетности синуса и свойству 1 под интегральные функции в . Следовательно,

 

, ,..

 

= (в точках непрерывности функции). Нечетная функция разлагается по нечетным функциям.

 

<== предыдущая лекция | следующая лекция ==>
Разложения в ряд Фурье функций, заданных на отрезке | Разложение в ряд Фурье функций, заданных на отрезке по синусам и косинусам кратных дуг
Поделиться с друзьями:


Дата добавления: 2014-01-06; Просмотров: 540; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.009 сек.