Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Разложение в ряд Фурье функций, заданных на отрезке по синусам и косинусам кратных дуг

Так как функция заданана отрезке , то ее можно доопределить на отрезок четным или нечетным образом.

Если функция доопределена четным образом, то она, как четная функция может быть разложена по формулам для четной функции

 

, , .

= (в точках непрерывности функции).

Это – разложение в ряд Фурье по косинусам кратных дуг.

 

Если функция доопределена нечетным образом, то она, как нечетная функция может быть разложена по формулам для нечетной функции

 

, ,..

 

= (в точках непрерывности функции).

Это – разложение в ряд Фурье по синусам кратных дуг.

 

Одну и ту же функцию, заданную на отрезке , можно разложить и по синусам, и по косинусам кратных дуг.

Пример. Разложить по косинусам и синусам кратных дуг функцию , заданную на отрезке .

Так как мы доопределяем функцию на отрезок при разложении по косинусам и синусам кратных дуг, то .

Разложим функцию по косинусам кратных дуг.

, , .

==1.

Разложим функцию по синусам кратных дуг.

, ,..

== ,

(теорема Дирихле).

 

<== предыдущая лекция | следующая лекция ==>
Свойства четных и нечетных функций | Комплексные числа, 3 формы записи, основные операции
Поделиться с друзьями:


Дата добавления: 2014-01-06; Просмотров: 11994; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.023 сек.