КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
ВВЕДЕНИЕ. Утверждено в качестве учебного пособия
Воротников С.М. ВВЕДЕНИЕ В МАТЕМАТИЧЕСКУЮ ЛОГИКУ С.М. Воротников
Утверждено в качестве учебного пособия Ученым советом Государственного образовательного учреждения высшего профессионального образования «Комсомольский-на-Амуре государственный технический университет»
Комсомольск-на-Амуре 2003 УДК 517.11 (07) ББК 22.122 я7 В 75
В 75 Введению в математическую логику.: Учебно-практ. пособие. – Комсомольск-на-Амуре: Государственное образовательное учреждение высшего профессионального образования «Комсомольский-на-Амуре гос. техн. ун-т», 2003. – 61 с.
По содержанию данное пособие тесно связано с конспектом лекций [1] и является методической основой для самостоятельного изучения следующих вводных разделов математической логики и ее приложений: формулы логики высказываний и операции над ними; упрощение записи формул; доказательство равносильности, тождественной истинности и тождественной ложности формул; приведение формул логики высказываний к нормальным формам; использование формул логики высказываний в теории конечных автоматов; формулы логики предикатов и операции над ними; исследование выполнимости, истинности, ложности и равносильности формул логики предикатов, приведение формул логики предикатов к предваренной (пренексной) нормальной форме; основы исчисления высказываний и исчисления предикатов. Рассмотрены примеры решения задач по указанным темам, приведены задачи и упражнения для самостоятельного решения, контрольные вопросы по теории и варианты индивидуальных заданий. Для студентов электротехнических специальностей, обучающихся по дистанционной технологии.
ББК 22.122 я7
© Государственное образовательное учреждение высшего профессионального образования «Комсомольский-на-Амуре государственный технический университет», 2003
© Институт новых информационных технологий Государственного образовательного учреждения высшего профессионального образования «Комсомольский-на-Амуре государственный технический университет», 2003
Разделы, связанные с математической логикой, входят в обязательный федеральный стандарт по ряду направлений и специальностей подготовки специалистов с высшим образованием. Между тем, учебной литературы, ориентированной на будущих технических специалистов, практически нет. Данное пособие в основном основывается на материале конспекта лекций [1], но может использоваться и независимо от других источников. Каждой теме предпослано краткое введение, содержащее определения основных понятий и теоретических результатов, используемых в соответствующих задачах. Приводятся примеры решения типовых задач, упражнения для самостоятельной работы, контрольные вопросы по теории и варианты индивидуального домашнего задания (контрольной работы). Пособие охватывает следующую тематику: формулы логики высказываний и операции над ними; упрощение записи формул; доказательство равносильности, тождественной истинности и тождественной ложности формул; приведение формул логики высказываний к нормальным формам; использование формул логики высказываний в теории конечных автоматов; формулы логики предикатов и операции над ними; исследование выполнимости, истинности, ложности и равносильности формул логики предикатов, приведение формул логики предикатов к предваренной (пренексной) нормальной форме; основы исчисления высказываний и исчисления предикатов. Использованы следующие общепринятые обозначения: N, Z, Q, R, C, – множества натуральных, целых, рациональных, действительных, комплексных чисел соответственно; – множество, состоящее из элементов ; – упорядоченный набор из элементов (-мерный вектор, -ка); – множество таких элементов , для которых выполняется условие (свойство) .
Дата добавления: 2014-01-06; Просмотров: 450; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |