Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Стадия биопоэза




Помимо 4-х основных классов биополимеров, могли образовываться и не дошедшие до нас гетерополимеры. Видимо, эволюция химических соединений шла по принципу минимума свободной энергии.

Остановимся пока на белках и нуклеиновых кислотах.

Из разных комплексов белок-нуклеиновая кислота рассмотрим только те, в которых

нуклеиновая кислота сохраняется благодаря защите белком от ультрафиолетового излучения.

Накопим такие комплексы. Из их множества рассмотрим те, в которых белки способствуют увеличению количества защищенной нуклеиновой кислоты. То есть эти белки - ферменты. Из этих комплексов рассмотрим те, где нуклеиновые кислоты, количество которых возрастает под действием белков, способствуют увеличению количества белков благодаря, например, прямому кодированию. Возникают системы с обратной связью. Такие системы обладают некоторыми признаками живого.

Другой вариант.

Первыми молекулами были РНК.

Они имеют третичную структуру и обладают каталитической активностью. Позже появились белки, поддерживающие "выгодные" конформации РНК и защищающие их от расщепления. Уже потом возникает ДНК, как более надежный хранитель генетической информации. Она имеет две цепи, что обеспечивает репарацию, репликация осуществляется за один шаг. Отсутствие ОН-группы в 2'-положении пентозы делает ДНК устойчивой в слабощелочных условиях, губительных для РНК.

Стадия 3.

Представим, что лужа покрыта жирной пленкой, а под ней - белки. Если оторвать каплю, то могут получиться пузырьки, содержащие нуклеопротеидные системы с обратной связью. Когда они падают на поверхность водоема, то покрываются вторым липидно-белковым слоем - и образуется современная биологическая мембрана. В мембранной капле диффузия уже не очень существенна.

Далее образуются пробионты - первые организмы, имеющие мембрану.

Эволюция пробиотов

Пробионты были первичными гетеротрофами. Они получали энергию при расщеплении органических веществ абиогенного происхождения, в изобилии имевшихся в окружающей среде. Примером древнего способа обмена веществ, дошедшего до наших дней, является гликолиз - ферментативное бескислородное расщепление глюкозы.

По мере истощения запаса органического материала (а новый не образовывался из-за изменения условий на Земле) возникала жесткая конкурентная борьба за него, что ускорило процесс эволюции первичных гетеротрофов.

Исключительным событием стало возникновение бактериального фотосинтеза, освободившего клетки от зависимости от доступности органики абиогенного происхождения. Скорее всего, фотосинтез возник у анаэробных бактерий, способных к азотофиксации. Побочным продуктом фотосинтеза является кислород. Его накопление в атмосфере привело к коренному изменению хода эволюции. Появление озонового экрана защитило первичные организмы от смертельного УФ-облучения и положило конец абиогенному синтезу органики.

Первые аэробные бактерии появились благодаря приобретению аппарата окислительного фосфорилирования. Продукты брожения подвергались дальнейшему окислению до СО2 и Н2О. Аэробные (вторичные) гетеротрофы могли более эффективно, чем анаэробные (первичные) гетеротрофы, расщеплять органические вещества, образующиеся в результате фотосинтеза.

По-видимому, с ростом концентрации кислорода в атмосфере усложнялась жизнь первичных анаэробных гетеротрофов. Некоторые из них вымерли, другие нашли бескислородную среду. Примером могут служить дошедшие до наших дней метанобразующие бактерии или серные бактерии, живущие в горячих подземных источниках.

Некоторые первичные гетеротрофы пошли по пути, приведшему к образованию эукариотических клеток. Часть из них вступила в симбиоз с аэробными бактериями, способными к окислительному фосфорилированию. Поглотив вторичных гетеротрофов, первичные не расщепили их на молекулы, а сохранили в качестве энергетических станций, называемых сегодня митохондриями.

Такие симбионты дали начало царствам животных и грибов.

Другая часть первичных гетеротрофов "заключила союз" не только с аэробными гетеротрофами, но и с первичными фотосинтетиками, сохранив последних в качестве хлоропластов. Такие симбионты дали начало царству растений.

В пользу симбиотической теории образования эукариот говорят следующие факты:

- У митохондрий и хлоропластов две мембраны. Внутренняя - своя, наружняя образована клеткой-захватчиком.

- Генетический код митохондрий идеален. Универсальный генетический код имеет два существенных отличия, касающихся инициации и терминации синтеза белка.

Таким образом эукариоты отстранились от чужой генетической информации.

Кроме того, они линеаризовали свою ДНК. Митохондрии и хлоропласты имеют кольцевую ДНК, хотя не очень понятно, для чего им нужна кольцевая ДНК, и бактериальные рибосомы. Однако понятно, почему у них такая ДНК и такие рибосомы. Потому, что их предки были бактериями. Сегодня часть генов митохондриальных белков и белков хлоропластов, в том числе их РНК- и ДНК-полимераз, находятся в ядре. Вероятно, попали они туда с помощью мобильных элементов.

Все бактерии делятся на эубактерии (в том числе E.сoli) и археобактерии. Принципиальное отличие между ними в том, что гены археобактерий имеют экзон - интронное строение и сплайсинг. Эубактерии - результат эволюции ана- и аэробных гетеротрофов. Их эволюция шла в благоприятных условиях и они сменили больше поколений, избавившись от интронов. Археобактерии живут в экстремальных условиях: горячие, кислые, высокосолевые подземные воды. Эукариоты и археобактерии сохранили экзон - интронную структуру, что говорит о древнем происхождении экзонов и интронов.




Поделиться с друзьями:


Дата добавления: 2014-01-06; Просмотров: 594; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.008 сек.