Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Колебания автомобиля




 

Кузов автомобиля имеет шесть степеней свободы и совершает весьма различные колебания (рис. 50.). Линейные перемещения вдоль осей х и у: Sх – подергивание, Sу – шатание, Sz – подпрыгивание, и угловые перемещения вокруг этих осей aх – покачивание, aу – галопирование, az – виляние.

 

 


Рис. 50. Основные виды колебаний

 

Приведенная жесткость подвески (сп) складывается из жесткости упругих элементов самой подвески (cр) и жесткости пневматических шин (cш) (рис. 51.).

 

 


Рис. 51. Определение приведенной жесткости подвески

 

 

Под влиянием веса Gп упругая система деформируется на величину, равную сумме прогибов подвески и шины. Вместе с тем суммарный прогиб этой системы, который определяют по изменению положения оси колеса:

 

f = Gппр, (193)

 

где спр – приведенная жесткость подвески и шины, Н/м.

Тогда

 

. (194)

 

Решив полученное равенство получим:

 

спр = . (195)

 

Жесткость передней или задней подвески современных автомобилей находится в пределах 20 - 60 кН/м, а жесткость шин – в пределах 200 - 450 кН/м.

Для уменьшения вертикальных колебаний используют мягкую подвеску и устанавливают амортизаторы. Чтобы иметь представление о том, каким образом уменьшить галопирование, познакомимся с понятием о центре упругости системы /3/. Центром упругости системы называют точку, при приложении к которой внешней возмущающей силы возникает только линейное перемещение системы. Рассмотрим стержень, который опирается на упругие элементы подвески (рис. 52).

Если сила Р приложена не к центру упругости, то происходит линейное и угловое перемещение стержня (положение 1). Если сила Р приложена к центру упругости, то происходит только линейное перемещение стержня(положение 2). В последнем случае f1 = f2, вследствие чего

галопирование отсутствует.

 

 


Рис. 52 Определение положения центра упругости

 

Определим величину х – расстояние от центра упругости до центра тяжести из условия равновесия стержня:

 

åМцт = R1a – Px – R2b = 0. (196)

 

Решив относительно х, получим:

 

х = (R1a – R2b)/Р. (197)

 

Заменим реакции R1 и R2 произведениями R1 = с1f1 и R2 = с2f2, следовательно Р = R1 + R2, откуда:

 

х = . (198)

 

Но по условию f1 = f2, то:

 

х = . (199)

 

Применим данное выражение к колебаниям кузова, заменив подрессоренную массу кузова mк тремя массами, связанными между собой невесомым стержнем (рис. 53,б).

 

 

 

Рис. 53. Свободные колебания кузова

 

Чтобы система соответствовала в динамическом отношении действительной массе подрессоренной части автомобиля, необходимо соблюдение следующих условий:

1.сумма всех масс системы должна быть равна подрессоренной массе автомобиля:

 

m1 + m2 + m3 = mк. (200)

 

2. центр тяжести системы должен совпадать с центром тяжести кузова:

 

m1ак = m2bк. (201)

 

3. момент инерции системы относительно горизонтальной оси у должен равняться моменту инерции подрессренной массе авиомобиля относительно той же оси:

 

m1ак2 + m2bк2 = I = mкrк2, (202)

 

где rк – радиус инерции подрессоренной массы автомобиля.

Из уравнений (200) – (202) определим массы m1, m2, m3:

 

m1 = (mкrк2)/(акL); (203)

 

m2 = (mкrк2)/(bкL); (204)

 

m3 = mк. (205)

 

Если стержень вывести из состояния равновесия, а затем отпустить, то он начнет колебаться (рис. 53,в). во время колебаний появляется сила инерции:

 

Ри = m3j. (206)

 

Она создает момент относительно центра упругости:

 

Ми = Рих = m3jх. (207)

 

Ми = 0, если m3 = 0 или когда х = 0. Из уравнения следует, что m3 = 0, если rк2/(акbк) = 1, т. к. mк ¹ 0.для легковых автомобилей отношение rк2/(акbк) близко к единице, вследствии чего они имеют хорошую плавность хода.

Если плечо х = 0 и центр тяжести совпадает с центром упругости, то:

 

х = = 0. (208)

 

тогда с1ак = с2bк или с12 = bкк.




Поделиться с друзьями:


Дата добавления: 2014-01-06; Просмотров: 3775; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.011 сек.