Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Теория активных столкновений. Уравнение Аррениуса




Правило Вант-Гоффа

Наглядное представление о зависимости скорости химических реакций от температуры даёт правило Вант-Гоффа, согласно которому

при повышении температуры на 10 градусов скорость реакции увеличивается в 2 - 4 раза.

Это правило первоначально было установлено для реакций, протекающих в растворах при невысоких температурах, а затем было распространено и на другие реакции. Оно связано с понятием температурного коэффициента скорости реакции g

kT +10 g = ¾¾¾, kT

где kT и kT +10 - константы скорости исследуемой реакции при какой-то данной температуре Т и при температуре, превышающей Т на 10 градусов.

При температурах, близких к комнатной, для большинства газовых реакций и реакций в растворах g» 3. Использование величины g позволяет приближённо оценить изменение скорости реакции при некотором увеличении температуры на 10n градусов, причем число n может быть как целым, так и дробным:

v2 kT + 10n ¾ = ¾¾¾ = g n, v1 kT

где v1 и v2 - скорости одной и той же реакции при температурах соответственно Т и Т + 10.

При очень высоких и очень низких температурах правило Вант-Гоффа не выполняется.

 


Количественная зависимость константы скорости реакции от температуры была впервые предложена тоже Я.Вант-Гоффом (1887) в виде уравнений изохоры и изобары химической реакции (см. п. 4.5.2).

Эта идея была развита С.Аррениусом (1889), который открыл, что температурную зависимость скорости многих реакций можно описать уравнением:

k = А е- Е* / RT

где k - константа скорости, e - основание натуральных логарифмов, R - универ­саль­ная газовая постоянная, T – температура, А - предэкспоненциальный множитель, Е* - энергия активации реакции.

Чтобы выяснить физический смысл величин А и Е*, входя­щих в уравнение Аррениуса, следует сначала познакомиться с основными положениями теории активных соударений (столкновений)(С.Аррениус и Я.Вант-Гофф; 1880-е г.г.):

1) Химическое взаимодействие между молекулами возможно только при их столкновении.

2) Не каждое столкновение молекул приводит к химическому взаимодействию, т. е. является результативным или, по терминологии Аррениуса, ак­тивным. Существует некий энергетический барьер, преодолеть который и вступить во взаимодействие может лишь часть молекул, причём, как правило, это очень малая часть от их общего числа в системе.

3) Причиной, обусловливающей существование энергетического барьера, является взаимное отталкивание электронных оболочек молекул при их сближении.

Когда две частицы удалены друг от друга на очень большое расстояние, между ними нет никакого взаимодействия и потенциальная энергия такой системы равна нулю. При меньших расстояниях между частицами они притягиваются друг к другу, и потенциальная энергия системы понижается. При дальнейшем уменьшении расстояния становятся заметными силы отталкивания электронных оболочек молекул и потенциальная энергия резко возрастает. Поэтому для сближения частиц до расстояния, на котором начнется перераспределение электронов на их орбиталях (т. е. химическое взаимодействие), частицы должны обладать достаточно большим запасом кинетической энергии. Силы отталкивания между частицами и представляют между собой так называемый потенциальный или энергетический барьер, а химическое взаимодействие возможно только в том случае, если сталкивающиеся молекулы способны преодолеть его.

4) Для того, чтобы молекулы могли при столкновении преодолеть энергетический барьер, они должны двигаться навстречу друг другу с достаточно большой скоростью. Для достижения этой необходимой скорости нужна определённая энергия, называемая энергией активации. Энергия активации Е * - это избыток энергии активных молекул по сравнению с неактивными, или иначе, энергия, которой должны обладать молекулы, чтобы иметь возможность вступить во взаимодействие. Размерность СИ энергии активации - Дж/моль.

5) Чем больше энергия активации реакции, тем больше энергетический барьер, и тем меньшее число молекул способно его преодолеть. Поэтому, чем больше Е *, тем медленнее идёт реакция.

6) С повышением температуры увеличивается скорость теплового движения молекул, поэтому доля активных молекул возрастает. Иными словами, при повышении температуры происходит термическая акти­ва­ция, приводящая к увеличению скорости реакции.

Возвращаясь к уравнению Аррениуса, отметим, что величина e- Е* / RT (“экспонента”) равна доле активных молекул, обладающих избыточной энергией Е * для вступления в химическое взаимодействие, а коэффициент А (предэкспоненциальный множитель) равен полной частоте соударений между молекулами реагирующих веществ в реакционном объёме.

Логарифмируя уравнение Аррениуса, получим уравнение прямой, не проходящей через начало координат:

E* ln k = ln A - ¾¾. RT

Построив по экспериментальным данным график зависимости ln k от 1/ T (т. н. “аррениусовскую зависимость”), можно вычислить энергию активации изучаемой реакции по тангенсу угла наклона, который в этом случае равен - Е* / R (рис. 12.5).

 
 

 


Рис. 12.5. Аррениусовская зависимость и энергия активации

 

Дифференцируя логарифмическую форму уравнения Аррениуса по температуре, получим уравнение, подобное уравнению изобары (изохоры) Вант-Гоффа:

d ln k E* ¾¾¾ = ¾¾ d T RT2

Интегрирование его в пределах k 1 ¸ k 2 и Т 1 ¸ Т 2 приводит к уравнению

k 2 E* 1 1 ln ¾ = ¾ (¾ - ¾) k 1 R T 2 T 1

или иначе

k 2 E* Т 2 - Т 1 ln ¾ = ¾ (¾¾¾), (12.11) k 1 R T 1 T 2

где k 1 и k 2 - константы скорости данной реакции при температурах T 1 и T 2 соответственно.

С помощью уравнения (12.11), также называемого уравнением Аррениуса, можно вычислить константу скорости k 2 при заданной температуре Т 2, если известны значения константы скорости k 1 при температуре Т 1 и энергия активации реакции Е*. Кроме того, это уравнение позволяет вычислить энергию активации реакции по значениям двух констант скорости при различных температурах:

R T 1 T 2 k 2 E* = ¾¾¾¾ ln ¾. Т 2 - Т 1 k 1

Таким образом, в соответствии с теорией активных соударений повышение температуры увеличивает скорость химических реакций потому, что при этом возрастает доля активных молекул, способных преодолеть потенциальный барьер при столкновении.

 




Поделиться с друзьями:


Дата добавления: 2014-01-06; Просмотров: 1129; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.019 сек.