Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Ускорение точки и его нахождение при различных




способах задания движения

Скорость точки, вообще говоря, изменяется со временем. Поэтому необходимо ввести величину, которая полностью смогла бы охарактеризовать изменение скорости. Для этого рассмотрим движение точки М, заданное в виде: .

Наглядность поведения достигается тем, что начало радиус-векторов точки М располагают в одной точке 0. Изменения вектора так наглядно не изображается, т.к. эти векторы приложены к различным точкам траектории.

Выберем какую-либо точку О’ и перенесём все векторы скорости параллельно самим себе, так чтобы их начала совпадали с точкой О’. Тогда концы вектора с течением времени определят непрерывную (т.к. векторизменяется непрерывно) кривую, называемую годографом вектора скорости. На рис б) непрерывной линией изображён годограф вектора скорости. Аналогично этому траекторию точки называют годографом радиус-вектора.

Ускорение точки в момент времени t определяется следующим соотношением:

(1.13)




Поделиться с друзьями:


Дата добавления: 2014-01-06; Просмотров: 305; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.01 сек.