Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Активные гидротурбины




Классификация гидротурбин

 

Гидравлической турбиной называется двигатель, преобразующий механическую энергию движущейся воды в механическую энергию вращения рабочего колеса двигателя.

Для потока жидкости удельная энергия потока на входе в рабочее колесо гидротурбины ,м, равна

, (5.1)

а на выходе рабочего колеса

. (5.2)

 

Здесь z 1 и z 2 - высоты расположения входа и выхода рабочего колеса турбины относительно плоскости сравнения; p 1, p 2, v 1, v 2 - давления и скорости потока жидкости на его входе и выходе соответственно. Величина удельной энергии, отданной потоком рабочему колесу турбины гидроагрегата (напор, используемый в агрегате), равна разности удельных энергий потока до и после рабочего колеса:

 

= Hg 1 - Hg 2 = (z 1 - z 2 ) + (p 1 - p 2 )/ g + (v 12 - v 22 )/2 g. (5.3)

 

В (5.3) слагаемое (z 1 - z 2) характеризует так называемую удельную энергию положения потока, слагаемое (p 1 - p 2)/ g - удельную энергию давления, слагаемое (v 12 - v 22)/2 g - удельную кинетическую энергию. Удельные энергии положения и давления составляют вместе удельную потенциальную энергию, отданную потоком жидкости в агрегате. В зависимости от того, какие из трех слагаемых выражения (5.3) доминируют при работе турбины, различают активные и реактивные классы турбин.

В активных турбинах используется только кинетическая энергия потока жидкости. В таких турбинах z 1 = z 2, p 1 = p 2. Для достижения высокого КПД практически весь напор на ГЭС преобразуется перед рабочим колесом в скоростной напор потока. Непосредственно перед рабочим колесом турбины поток воды достигает максимально возможной скорости. В класс активных турбин входят ковшовые, наклонно-струйные турбины и турбины двойного действия. На ГЭС основное распространение получили ковшовые турбины.

В реактивных турбинах хотя бы частично используется и потенциальная энергия потока. Для них (z 1 - z 2 ) + (p 1 - p 2 )/ g 0. Процесс преобразования энергии на рабочем колесе происходит с избытком давления. В рабочем колесе реактивной турбины используется и кинетическая энергия потока. Класс реактивных турбин в зависимости от конструкции рабочего колеса делится на следующие системы: радиально-осевые, пропеллерные, поворотно-лопастные и диагональные.

 

 

В качестве представителя класса активных гидротурбин рассмотрим здесь наиболее распространенную ковшовую турбину с основными элементами конструкции (рис.5.1). Главными составными частями ковшовой турбины являются рабочее колесо, сопло и игла с регулирующим механизмом.

  Рис. 5.1. Ковшовая турбина: а - схема установки турбины; б - общий вид рабочего колеса

Вода из верхнего бьефа подводится трубопроводом к рабочему колесу, выполненному в виде диска и закрепленному на валу турбины. Колесо вращается в воздухе. По окружности колеса равномерно расположены ковшеобразные лопасти (ковши). Чтобы максимально преобразовать кинетическую энергию воды в механическую энергию вращения рабочего колеса, ковши выполняют эллиптической формы. На эллиптических частях ковша вода меняет свое направление на 180и сходит с них с очень малой скоростью.

Формирование струи, придание ей необходимой скорости и преобразование энергии подводимой трубопроводом воды в кинетическую производится с помощью сопла 1, в котором помещается игла 2 для регулирования расхода и мощности турбины. При перемещении иглы изменяется выходное сечение струи и тем самым ее расход. Скорость перемещения иглы ограничена из-за опасности возникновения гидравлического удара. Для исключения появления гидравлического удара закрытие иглы идет медленно, в течение 20-40 с. В случае необходимости быстрого снижения мощности используется отклонитель струи, который за 2-3 с отводит струю от лопаток.

У ковшовых турбин лопасти рабочего колеса испытывают переменную нагрузку. В связи с этим возникают усталостные явления в металле, приводящие к расслаблению крепления. В настоящее время стали применять цельнолитые и сварнолитые рабочие колеса с повышенной надежностью.

Конструктивно ковшовые турбины могут различаться по расположению вала (вертикальные и горизонтальные), по числу сопел и рабочих колес на одном валу.

Ковшовые турбины, диаметр рабочего колеса которых достигает 7,5 м, используются в диапазоне напоров 300-2000 м и имеют мощность до 200 МВт. КПД таких турбин составляет 88-91 %.




Поделиться с друзьями:


Дата добавления: 2014-01-06; Просмотров: 1990; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.061 сек.