Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Следствия из интегральной теоремы Муавра-Лапласа

Свойства функции Лапласа

  1. Функция Лапласа нечетна:
  2. Функция Лапласа – монотонно возрастающая;
  3. т.е. прямые и являются горизонтальными асимптотами (правой и левой соответственно) графика ; на практике полагаем при

График функции Лапласа схематично изображен на рис. 2.

 

Пусть выполнены условия применимости интегральной теоремы Муавра-Лапласа.

Следствие 1. Вероятность того, что число наступлений события А в n повторных независимых испытаниях будет отличаться от величины не более чем на (по абсолютной величине), вычисляется по формуле

Следствие 2. Вероятность того, что доля наступлений события А в n повторных независимых испытаниях будет отличаться от вероятности p наступления этого события в одном испытании не более чем на (по абсолютной величине), вычисляется по формуле

Пример. Подлежат исследованию 1000 проб руды. Вероятность промышленного содержания металла в каждой пробе равна 0,15. Найти границы, в которых с вероятностью 0,9973 будет заключено число проб руды с промышленным содержанием металла.

Решение. Искомые границы для числа проб руды с промышленным содержанием металла (из данных 1000 проб) определяются величинами и (см. интегральную теорему Муавра-Лапласа). Будем предполагать, что искомые границы симметричны относительно величины , где и . Тогда , для некоторого , и, тем самым, единственной определяющей неизвестной данной задачи становится величина . Из следствия 1 и условия задачи следует, что

По таблице значений функции Лапласа найдем такое , что

Тогда и . Окончательно получаем искомые границы: т.е. с вероятностью 0,9973 число проб руды с промышленным содержанием металла (из данных 1000 проб) попадет в интервал (116; 184).

Пример. В лесхозе приживается в среднем 80% саженцев. Сколько саженцев надо посадить, чтобы с вероятностью 0,9981 можно было утверждать, что доля прижившихся саженцев будет находиться в границах от 0,75 до 0,85.

Решение. – вероятность прижиться для каждого из саженцев, . Пусть – необходимое число саженцев (искомая величина данной задачи) и – число прижившихся из них, тогда – доля прижившихся саженцев. По условию,

Данные границы для доли симметричны относительно величины , поэтому неравенство равносильно неравенству

Следовательно, вероятность 0,9981 – это та самая вероятность, которая вычисляется по следствию 2 из интегральной теоремы Муавра-Лапласа при , :

По таблице функции Лапласа найдем такое значение , что Это значение: Тогда

и

Заметим, что значение округлено до целых в большую сторону, чтобы обеспечить, как говорят, “запас по вероятности”. Кроме того, видно, что полученное значение достаточно велико (более 100), поэтому применение интегральной теоремы Муавра-Лапласа для решения данной задачи было возможно.

<== предыдущая лекция | следующая лекция ==>
Интегральная теорема Муавра-Лапласа | Закон распределения дискретной случайной величины
Поделиться с друзьями:


Дата добавления: 2014-01-06; Просмотров: 8326; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.01 сек.