КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Свойства математического ожидания. (Постоянной случайной величиной С называется такая случайная величина, которая принимает единственное значение равное С с вероятностью 1.) Постоянный
М(С)=С, где С – некоторое число. (Постоянной случайной величиной С называется такая случайная величина, которая принимает единственное значение равное С с вероятностью 1.)
где – произвольное число.
4. Математическое ожидание произведения независимых случайных величин равно произведению их математических ожиданий, т.е.
5. Пусть – такие случайные величины, математические ожидания которых равны между собой, т.е. где и а – некоторое число. Тогда среднее арифметическое этих случайных величин равно их общему математическому ожиданию, т.е.
Заметим, что свойства 2 – 5 математического ожидания остаются справедливыми также для непрерывных случайных величин.
Пусть закон распределения случайной величины Х тот же, что и выше (см. начало параграфа). Определение. Дисперсией дискретной случайной величины Х называется число определяемое равенством
Число является мерой разброса значений случайной величины Х около ее математического ожидания. Пример. Пусть случайная величина Х биномиально распределена с параметрами и . Найдем дисперсию этой случайной величины. В предыдущем примере найдено, что М(Х) = 2,4. Тогда
Дата добавления: 2014-01-06; Просмотров: 272; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |