Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Параметры распределения дискретной случайной величины

Ответ.

 

Z:       V:    
0,08 0,44 0,48 0,52 0,48

 

W:     R:    
0,4 0,6 0,56 0,44

 

Заметим, что закон распределения случайной величины Z фактически найден в примере § 3.1 о двух стрелках. Действительно, исходные независимые случайные величины X и Y данной задачи могут быть интерпретированы как числа попаданий в мишень первого и второго стрелка из § 3.1. Тогда общее число попаданий, и закон распределения этой случайной величины и найден в упомянутом примере.

Пусть закон распределения дискретной случайной величины Х имеет вид

 

:

 

Определение. Математическим ожиданием дискретной случайной величины Х называется число М(Х), вычисляемое по формуле

Математическое ожидание случайной величины есть число около которого группируются значения этой случайной величины.

Механическим аналогом математического ожидания дискретной случайной величины является центр масс (центр тяжести) системы точечных масс: если в точках числовой оси с абсциссами расположены точечные массы , то абсцисса их центра масс находится точно по формуле для , приведенной выше.

Пример. Пусть случайная величина Х биномиально распределена с параметрами и (см. пример из § 3.1):

Х:        
0,008 0,096 0,384 0,512

Тогда

 

<== предыдущая лекция | следующая лекция ==>
Арифметические операции над случайными величинами | Свойства математического ожидания. (Постоянной случайной величиной С называется такая случайная величина, которая принимает единственное значение равное С с вероятностью 1.) Постоянный
Поделиться с друзьями:


Дата добавления: 2014-01-06; Просмотров: 276; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.011 сек.