КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Характеристическая функция коалиционной игры
Объединение игроков в коалицию К превращает их в одного игрока с множеством стратегий, получаемым объединением стратегий игроков, вошедших в коалицию. Очевидно, выигрыш коалиции К в ситуации Х равен H(K)(x) =— сумма выигрышей всех участников коалиции. Деятельность игроков, не вошедших в коалицию, для гарантированного выигрыша можно рассматривать как помеху, т.к. интересы этого 2го игрока прямо противоположны интересам коалиции. Таким образом осуществляется переход от коалиционной игры Г к игре Г(К) — антагонистической игре коалиции против всех остальных (игра двух объединенных игроков с антагонистическими интересами). Это рассуждение, в соответствии с принципом максимина, рассматривает выигрыш v(k), kI, ; рассматриваются все коалиции, которые могут образоваться в игре. Значение v(k), — характеристическая функция коалиционной игры. Содержательно характеристическая функция может иметь разные происхождения. ПРИМЕР. Пусть I — группа работников одинаковой квалификации, которые способны выполнить работу в а единиц (каждый). Тогда любая коалиция К с численностью игроков =|k| будет иметь выигрыш v(k)=|k|*a. Участники коалиции — болваны, т.к. присоединяясь к коалиции они могут увеличить ее выигрыш только на величину, которую они способны заработать вне коалиции, действуя самостоятельно. В общем случае присоединение j-ого игрока к коалиции может увеличить выигрыш каждого игрока, входящего в коалицию. В этом случае выигрыш i-ого игрока будет равен , где ai — собственный выигрыш i-ого игрока, bij — выигрыш i-ого игрока от того, что в коалицию входит j-ый игрок.
Очевидно, если просуммировать выигрыш по всей коалиции, получим:
v(k)== , ПРИМЕР. Имеется рынок (например, автомобильный), где есть продавец (Пр) и два покупателя (П1 и П2). Продавец владеет товаром (неделимым) стоимостью а; первый покупатель (П1) оценивает этот товар стоимостью b, второй (П2) — стоимостью с: Пр П1 П2 a b c если a > max(b,c), игры не будет: продавец уйдет с рынка. Игра уместна, если, например, a<b<c. Вначале полезности таковы: Пр П1 П2 a 0 0 Пусть первый покупатель (П1) купил товар полезностью х, тогда полезности будут следующими: Пр П1 П2 х b-x 0 если П2 купит товар за х,то: Пр П1 П2 х 0 с-х Рассмотрим характеристическую функцию: v(Пр)=a v()=0 v(П1)=v(П2)=v(П1 П2)=0 v(Пр,П1)=b v(Пр,П2)=c v(Пр,П1,П2)=с
Дата добавления: 2014-01-06; Просмотров: 220; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |