КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Допустимые стратегии в статистических играх
Допустим, что рассматривается смешанная стратегия: P(x)=(a). Возможно два случая: Нельзя найти ’(а) — другая стратегия, когда потери: L(V, ’)L(V, ), VZ Если такая стратегия ’(a) существует, то стратегия (а) недопустима. (а) a= x (a)p(x) Стратегия (а) — допустимая, если нельзя найти другую стратегию ’(a): L(V, ’)L(V, ) — условие допустимости стратегии (а). Допустимая стратегия не обязательно является предпочтительной. Допустимую стратегию удобно рассматривать в рамках S-игры. Если V=(VV), то потери можно рассмотреть на плоскости.
Множество значений этих потерь можно сопоставить с выпуклой линейной оболочкой S*. Рассмотрим некоторую точку SS*, проведём отрезок из начальных координат в эту точку. Очевидно, что все точки, расположенные на этом луче и множество S* будут давать потери, меньшие, чем потери S. Наименьшие потери будут а точке S, которая является пересечением луча и нижней левой границы выпуклой оболочки. Допустимыми могут быть стратегии, принадлежащие участку линейной оболочки, который является дугой AB. Все стратегии, которые определяются точками линейного множества S*, не принадлежащие её левой нижней границе, можно исключить из рассмотрения. А точки, принадлежащие дуге АВ, в некотором смысле эквивалентны, т. к. при перемещении по этим точкам можно уменьшить потери в одном состоянии и увеличить в другом (сразу всё уменьшить невозможно).
Пример: «задача о технологической линии» Нижняя левая граница состоит из точек C, Cи С WC+(1-W)C WC+(1-W)C Смешанная стратегия (а) = (W, 1-W, 0), (a) = (0, W, 1-W) Определим потери статистика для этих стратегий: L(V, ) = W*0 + 1*(1-W) = 1-W, L(V, ) = 5*W + 3(1-W) = 3 + 2W L(V, ) = 1*W + 3(1-W) = 3 – 2W L(V, ) = 3W + 2(1-W) = 2+ W Рассмотрим возможные пути выбора смешанных стратегий статистика. 1. Принцип минимакса (min max); 2. Байесовский принцип. Принцип минимакса ориентирует статистика на выбор такой смешанной стратегии (а), при которой его потери в наихудшем состоянии природы минимальны. Применим этот принцип для выбора W в задаче. 1 случай:
В наихудшем состоянии природы эти потери определяются прямой V: W = 0 *(0 1 0), потери равны 3.
2 случай: 3 -2W = 2 + W 1 = 3W; W = 1/3 * (0 1/3 2/3); V = 7/3 (цена игры). В наихудшем состоянии природы потери определяются верхней границей, минимум в точке О.
Иногда значение функции потерь удобно приводить к определённому нулевому уровню. Очевидно, для нахождения состояния природы L(V, a)L(V, a) Этот минимум определяет минимальные затраты, которые может понести статистик при каждом состоянии природы. L’(V, ) = L(V, ) - L(V, a) В предыдущей задаче о ПДК потери определялись бы следующим образом:
Очевидно, что принцип минимакса можно применять и для дополнительных потерь.
Байесовский принцип направлен на принятие решения, исходя из априорных оценок вероятностей состояния природы. q(V) (V) Если q — априорная вероятность состояния природы, то можно говорить о потерях: L(, ) = Матрица потерь статистика в игре: * = (V), i = L(, ) = L(V, a) * (a) * (V)min Наилучшей стратегией будет та, при которой байесовские потери L(, ) будут минимальными. Аналогично можно применить байесовский принцип при дополнительных потерях.
Пример: (та же задача) 1 ситуация: (V) = 0,6. Найдём оптимальную байесовскую стратегию в этой задаче. (V) = 0,4 L() = (1-W)*0,6 + (3 + 2W)*0,4 = 1,8 + 0,2W 1,8 при W = 0. (0, 1, 0) – нужно применять вторую технологию.
2 ситуация: L() = 0,6*(3-2W) + 0,4(2 + W) = 2,6 – 0,8Wmin W=1
Дата добавления: 2014-01-06; Просмотров: 376; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |