Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Лекция 5. Решение систем нелинейных уравнений




Задание

 

1. Путем ручного просчета найти корень заданного уравнения двумя методами (из четырех рассмотренных) с заданной точностью. Отделение корней провести графически. Привести все необходимые промежуточные вычисления. Результаты свести в итоговую таблицу:

 

№ итерации Xn |Xn-Xn-1| или |Bn-An| F(Xn)
       
       

Замечание. Для каждого уравнения необходимо найти один корень. Если уравнение имеет более одного корня, необходимо отыскать ближайший к началу координат.

 

Номер уравнения выбрать по формуле: k+21*(q-1).

Здесь k – номер студента в списке группы; q=1 для группы А и 2 для группы Б.

Допустимая погрешность вычисляется по формуле:

 

Номера применяемых методов (1-дихотомии; 2-хорд; 3-касательных; 4-простой итерации) вычислить по формуле:

N1=(k-q)MOD 2+1; (первый метод)

N2=[(k+q)DIV 2]MOD 2+3 (второй метод).

Варианты к заданию

1. .

2. .

3. .

4. .

5. .

6. .

7. .

8. .

9. .

10. .

11. .

12. .

13. .

14. .

15. .

16. .

17. .

18. .

19. .

20. .

21. .

22. .

23. .

24. .

25. .

26. .

27. .

28. .

29. .

30. .

31. .

32. .

33. .

34. .

35. .

36. .

37. .

38. .

39. .

40. .

41.

42.

43.

44.

45.

 

 

 

 


В которой, рассмотренные выше, методы Ньютона и итераций обобщаются на случай систем нелинейных уравнений.

 

Ниже ограничимся рассмотрением метода итераций и метода Ньютона, которые относятся к числу основных.

 




Поделиться с друзьями:


Дата добавления: 2014-01-06; Просмотров: 335; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.009 сек.