КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Лекция 5. Решение систем нелинейных уравнений
Задание
1. Путем ручного просчета найти корень заданного уравнения двумя методами (из четырех рассмотренных) с заданной точностью. Отделение корней провести графически. Привести все необходимые промежуточные вычисления. Результаты свести в итоговую таблицу:
Замечание. Для каждого уравнения необходимо найти один корень. Если уравнение имеет более одного корня, необходимо отыскать ближайший к началу координат.
Номер уравнения выбрать по формуле: k+21*(q-1). Здесь k – номер студента в списке группы; q=1 для группы А и 2 для группы Б. Допустимая погрешность вычисляется по формуле:
Номера применяемых методов (1-дихотомии; 2-хорд; 3-касательных; 4-простой итерации) вычислить по формуле: N1=(k-q)MOD 2+1; (первый метод) N2=[(k+q)DIV 2]MOD 2+3 (второй метод). Варианты к заданию 1. . 2. . 3. . 4. . 5. . 6. . 7. . 8. . 9. . 10. . 11. . 12. . 13. . 14. . 15. . 16. . 17. . 18. . 19. . 20. . 21. . 22. . 23. . 24. . 25. . 26. . 27. . 28. . 29. . 30. . 31. . 32. . 33. . 34. . 35. . 36. . 37. . 38. . 39. . 40. . 41. 42. 43. 44. 45.
В которой, рассмотренные выше, методы Ньютона и итераций обобщаются на случай систем нелинейных уравнений.
Ниже ограничимся рассмотрением метода итераций и метода Ньютона, которые относятся к числу основных.
Дата добавления: 2014-01-06; Просмотров: 335; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |