Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Изображения синусоидальных функций времени в векторной форме




При расчете электрических цепей часто приходится складывать или вычитать величины токов или напряжений, являющиеся синусоидальными функциями времени. Графические построения или тригонометрические преобразования в этом случае могут оказаться слишком громоздкими. Для упрощения расчетов пользуются либо векторным представлением тригонометрических функций, либо комплексным представлением.

Задача упрощается, если представить наши синусоидальные функции в векторной форме. Имеем синусоидальную функцию . Известно, что проекция отрезка, вращающегося вокруг оси с постоянной угловой скоростью, на любую линию, проведенную в плоскости вращения, изменяется по синусоидальному закону.

Пусть отрезок прямой длиной Im начинает вращаться вокруг оси " 0 ", ось направлена на нас из толчки “ 0 ”, из положения, когда он образует с горизонтальной осью угол φ, и вращается против часовой стрелки с постоянной угловой скоростью ω. Проекция отрезка на вертикальную ось в начальный момент времени . Когда отрезок повернется на угол α1, проекция его . Откладывая углы α1, α2,... на горизонтальной оси, а проекции отрезка прямой - на вертикальной оси, получим ряд точек синусоиды (рис. 3.1).

Рисунок 3.1. Вектор на координатной плоскости, соответствующий синусоидальной зависимости тока i с амплитудой Im от времени t с частотой ω и начальной фазой φ.

Представим синусоидальные токи i1 и i2 в виде двух радиус - векторов, длина которых равна в соответствующем масштабе амплитудам соответствующих переменных токов I1m и I2m. Эти векторы расположены в начальный момент времени под углами φ1 и φ2 относительно горизонтальной оси. Сложим геометрически отрезки I1m и I2m. Получим отрезок, длина которого равна амплитудному значению результирующего тока I3m. Отрезок расположен под углом φ3 относительно горизонтальной оси. Все три отрезка вращаются вокруг оси 0 с постоянной угловой скоростью ω. Проекции отрезков на вертикальную ось изменяются по синусоидальному закону. Будучи остановленными для рассмотрения, данные отрезки образуют векторную диаграмму (рис. 3.2).Векторная диаграмма - это совокупность векторов, изображающих синусоидальные напряжения, токи и ЭДС одинаковой частоты.

Рисунок 3.2. Сложение в векторной форме синусоидальных токов с амплитудами I1m и I2m и начальными фазами φ1 и φ2 и результирующий ток I3m с начальной фазой ψ3. Все три тока колеблются с одной и той же частотой ω.

Необходимо отметить, что напряжение, ток и ЭДС - это скалярные, а не векторные величины. Мы представляем их на векторной диаграмме в виде не пространственных, а временных радиус - векторов, вращающихся с одинаковой угловой скоростью, длины этих векторов равны амплитудам соответствующих величин (тока, напряжения, ЭДС). Положительным считается направление вращения векторов против часовой стрелки.




Поделиться с друзьями:


Дата добавления: 2014-01-06; Просмотров: 494; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.007 сек.