КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Волновое уравнение
Одним из наиболее распространенных в инженерной практике уравнений с частными производными второго порядка является волновое уравнение, описывающее различные виды колебаний. Поскольку колебания — процесс нестационарный, то одной из независимых переменных является время t. Кроме того, независимыми переменными в уравнении являются также пространственные координаты х, у, z. В зависимости от их количества различают одномерное, двумерное и трехмерное волновые уравнения. Одномерное волновое уравнение описывает продольные колебания стержня, сечения которого совершают плоскопараллельные колебательные движения, а также поперечные колебания тонкого стержня и другие задачи. Двумерное волновое уравнение используется для исследования колебаний тонкой пластины. Трехмерное волновое уравнение описывает распространение волн в пространстве. Рассмотрим одномерное волновое уравнение, которое можно записать в виде
Для поперечных колебаний струны искомая функция U(x,t) описывает положение струны в момент t. В этом случае, где Т — натяжение струны, — ее линейная плотность. Уравнение записано для случая свободных колебаний. Сопротивление среды колебательному процессу не учитывается.
Решим задачу Коши для этого уравнения. Вот условия задачи:
Эти условия описывают начальную форму струны и скорость ее точек. На практике чаще приходится решать не задачу Коши для бесконечной струны, а смешанную задачу для ограниченной струны некоторой длины. В этом случае задают граничные условия на ее концах. В частности, при закрепленных концах их смещения равны нулю, и граничные условия имеют вид
Для решения такой задачи используем явную трехслойную схему типа крест. Заменим в начальном уравнении вторые производные искомой функции U по t и х их конечно-разностными соотношениями с помощью значений сеточной функции в узлах сетки
Отсюда можно найти явное выражение для значения сеточной функции на (j + 1)-м слое:
Здесь, как обычно в трехслойных схемах, для определения неизвестных значений на (j + 1)-м слое нужно знать решения на j-м и (j — 1)-м слоях. Поэтому начать счет можно лишь для второго слоя, а решения на нулевом и первом слоях должны быть известны. Они находятся с помощью начальных условий. На нулевом слое имеем
Для получения решения на первом слое воспользуемся вторым начальным условием. Производную заменим конечно-разностной аппроксимацией.
Из этого соотношения можно найти значения сеточной функции на первом временном слое:
Отметим, что аппроксимация начального условия в таком виде ухудшает аппроксимацию исходной дифференциальной задачи: погрешность аппроксимации становится порядка,т. е. первого порядка по, хотя сама схема имеет второй порядок аппроксимации по h и. Положение можно исправить, если взять более точное представление
Так как,
то:
Теперь разностная схема обладает погрешностью аппроксимации порядка. Рассмотренная разностная схема решения задачи условно устойчива. Необходимое и достаточное условие устойчивости имеет вид
Следовательно, при выполнении этого условия и с учетом аппроксимации схема сходится к исходной задаче со скоростью.
Дата добавления: 2014-01-06; Просмотров: 1014; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |