Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Уравнение Лапласа

Многие стационарные физические задачи (исследования потенциальных течений жидкости, определение формы нагруженной мембраны, задачи теплопроводности и диффузии в стаци­онарных случаях и др.) сводятся к решению уравнения Пуассона вида

 

При F(x, у, z) = 0, уравнение Пуассона называют уравнением Лапла­са. Для простоты будем рассматривать двумерное уравнение Лапласа

 

Решение этого уравнения будем искать для некоторой ограниченной об­ласти G изменения независимых переменных х, у. Границей области G является замкнутая линия L. Для полной формулировки краевой задачи кроме уравнения Лапласа нужно задать граничное условие на границе L. Примем его в виде

 

 

 

Задача, состоящая в решении уравнения Лапласа (или Пуассона) при заданных значениях искомой функции на границе расчетной области, называется задачей Дирихле.

Одним из способов решения стационарных эллиптических задач, в том числе и краевой задачи, является их сведение к реше­нию некоторой фиктивной нестационарной задачи (гиперболической или параболической), найденное решение которой при достаточно больших значениях времени t близко к решению исходной задачи. Такой способ решения называется методом установления.

Поскольку решение U(x,y) уравнения Лапласа не зависит от времени, то можно в это уравнение добавить равный нулю (при точном решении) член. Тогда уравнение примет вид

 

Это — известное нам уравнение теплопроводности, для которого мы уже строили разностные схемы. Остается только задать на­чальное условие. Его можно принять практически в произвольном виде, согласованном с граничными условиями. Положим

 

Граничное условие при этом остается стационарным, т. е. не зави­сящим от времени.

Процесс численного решения такого уравнения состоит в переходе при от произвольного значения к искомому стационарному решению. Счет ведется до выхода решения на стационарный режим. Естественно, ограничиваются решением при некотором достаточно большом t, если искомые значения на двух после­довательных слоях совпадают с заданной степенью точности.

Метод установления фактически представляет итерационный процесс, причем на каждой итера­ции значения искомой функции получаются путем численного решения некоторой вспомогательной задачи. В тео­рии разностных схем показано, что этот ите­рационный процесс сходится к решению исходной задачи, если такое стационарное решение существует.

Другой способ решения задачи Дирихле состоит в построении разностной схемы путем аппроксимации уравнения Лапласа. Вве­дем в прямоугольной области G сетку с по­мощью координатных прямых х = const и у = const. Примем, для простоты значения шагов по переменным, х и у равными h (пред­полагается, что стороны области G соизме­римы). Значения функции U в узлах заменим значениями сеточной функции Тогда, аппроксимируя в урав­нении Лапласа вторые производные с помощью отношений конечных раз­ностей, получим разностное уравнение.

 

С помощью данного уравнения можно записать систему линейных алгебраических уравнений относительно значений сеточной функции в узлах в виде

 

Значения сеточной функции в узлах, расположенных на границе рас­четной области, могут быть найдены из граничного условия:

 

Перейдем теперь к решению полученной системы. Каждое уравнение системы (за исключе­нием тех, которые соответствуют узлам, расположенным вблизи границ) содержит пять неизвестных. Одним из наиболее распространенных мето­дов решения этой системы линейных уравнений является итерационный метод. Каждое из уравнений записываем в виде, разрешенном относи­тельно значения в центральном узле:

 

В ряде случаев уравнение с частными производными удобно привести к системе обыкновенных дифференциальных уравнений, в которых оставлены производ­ные искомой функции лишь по одной пере­менной.

Такой способ можно использовать и для решения уравнения Лапласа. Пусть требуется решить для него задачу Дирихле в прямоугольнике ABCD. Разо­бьем прямоугольник на полосы с помощью прямых, параллельных оси х. Для определенности проведем три отрезка, которые разделят прямоугольник на четыре полосы постоянной ширины h. Решение U задачи Дирихле приближенно заменим набором функций, каждая из которых определена на отрезке U и зависит только от одной переменной х, т. е. = для =1,2,3. На отрезках значения заданы граничными условиями.

Построим разностную схему, для определения значений функций. Аппроксимируя в уравнении вторую производную по у, с помощью отношения конечных разностей, получаем

 

Таким образом, решение задачи Дирихле сводятся к ре­шению краевой задачи для системы обыкновенных дифференциальных уравнений относительно значений искомой функции вдоль пря­мых. В этом состоит метод прямых. Граничные условия при х=а, х = b можно получить из уравнений

 

Метод прямых широко, используется для решения нестационарных задач. Например, если имеются две независимые переменные х, t, а ис­комый параметр является гладкой функцией переменной х, то дискре­тизация вводится по этой переменной. Тогда исходная задача заменяется задачей Коши для системы обыкновенных дифференциальных уравнений вида

 

 

<== предыдущая лекция | следующая лекция ==>
Волновое уравнение | Экономика отрасли
Поделиться с друзьями:


Дата добавления: 2014-01-06; Просмотров: 1559; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.011 сек.