Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Центр инверсии

 

Центром инверсии называется такая точка внутри фигуры, при отражении в которой всех точек последняя совмещается сама с собой.

Чтобы произвести отражение какой-либо точки фигуры в центре инверсии (рис. 2.6), нужно соединить эту точку и точку С прямой линией.

Как видно из рис. 2.6 плоскости треугольников параллельны, но стороны имеют противоположные

направления.

Рис. 2.5. Куб имеет девять плоскостей симметрии (9Р): три главных плоскости (а) и шесть диагональных (б)

 

Центр инверсии называют центром обратного равенства, потому что каждая грань при наличие центра инверсии должна иметь равную себе и обратно параллельную грань (рис. 2.7).

Рис. 2.6. Треугольник АВD и А1В1D1, связанные центром инверсии, равны друг другу и обратно параллельны

 

 

Рис. 2.7. Многогранник с центром инверсии С: грани попарно равны и обратно параллельны
Рис. 2.8. Многогранник не имеет центра инверсии, т.к. для грани q нет парной параллельной грани

 

<== предыдущая лекция | следующая лекция ==>
Плоскости симметрии | Оси симметрии
Поделиться с друзьями:


Дата добавления: 2014-01-06; Просмотров: 879; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.008 сек.