![]() КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
График функции. Свойство монотонности функции
Понятие функции. Способы задания функций Лекция 18. Числовые функции План: 1. Определение числовой функции как частного случая соответствия.. Способы задания функции. Область определения и область значения функции. 2. График функции. Свойство монотонности функции § 9. ЧИСЛОВЫЕ ФУНКЦИИ Функция - одно из важнейших понятий математики, исходное понятие ведущей ее области - математического анализа. В школьном курсе математики основное внимание уделяется числовым функциям. Причиной этого является тесная связь математики с естественными науками, в частности с физикой, для которой числовые функции служат средством количественного описания различных зависимостей между величинами. В начальном курсе математики понятие функции и все, что с ним связано, в явном виде не изучается, но идея функциональной зависимости буквально пронизывает его, а правильное понимание таких свойств реальных явлений, как взаимозависимость и изменяемость, является основой научного мировоззрения. Безусловно, все это требует от учителя начальных классов определенных знаний о функции и ее свойствах, и прежде всего таких, которые помогут ему осуществлять в начальной школе пропедевтику понятия функции. Выполним два задания для младших школьников. 1) Увеличь каждое нечетное однозначное число в 2 раза. 2) Заполни таблицу.
С какими математическими понятиями мы имеем дело, выполняя эти задания? Прежде всего, в каждом задании есть два числовых множества, между которыми устанавливается соответствие. В первом - это множества {1, 3,5, 7} и {2, 6, 10, 14}, а во втором - это множество значений вычитаемого {0, 1, 2, 3, 4,5} и множество значений разности {5, 4, 3, 2, 1, 0}. В чем сходство устанавливаемых между этими множествами соответствий? И в первом, и во втором задании каждому числу из первого множества сопоставляется единственное число из второго. В математике такие соответствия называют функциями. В общем виде понятие числовой функции определяют так: Определение. Числовой функцией называется такое соответствие между числовым множеством X и множеством R действительных чисел, при котором каждому числу из множества X сопоставляется единственное число из множества R. Множество X называют областью определения функции. Функции принято обозначать буквами f, g, h и др. Если f - функция, заданная на множестве X, то действительное число у, соответствующее числу x из множества X, часто обозначают f (х) и пишут у = f (х). Переменную х при этом называют аргументом (или независимой переменной) функции f. Множество чисел вида f (х) для всех х из множества X называют областью значений функции f. В рассмотренном выше первом примере функция задана на множестве X = {1, 3, 5, 7} - это ее область определения. А область значений этой функции есть множество {2, 6, 10, 14}. Из определения функции вытекает, что для задания функции необходимо указать, во-первых, числовое множество X, т.е. область определения функции, и, во-вторых, правило, по которому каждому числу из множества X соответствует единственное действительное число. Часто функции задают с помощью формул, указывающих, как по данному значению аргумента найти соответствующее значение функции. Например, формулы у = 2 х - 3, у = х 2, у = 3 х, где х - действительное число, задают функции, поскольку каждому действительному значению х можно, производя указанные в формуле действия, поставить в соответствие единственное значение. у. Заметим, что с помощью одной и той же формулы можно задать как угодно много функций, которые будут отличаться друг от друга областью определения. Например, функция у = 2 х - 3, где x € R, отлична от функции у = 2 х - 3, где х € N. Действительно, при х = -5 значение первой функции равно -13, а значение второй при х = -5 не определено. Часто при задании функции с помощью формулы ее область определения не указывается. В таких случаях считают, что областью определения функции является область определения выражения f (х). Например, если функция задана формулой у = 2 х - 3, то ее областью определения считают множество R действительных чисел. Если функция задана формулой у = 6/(x -2), то ее область определения - есть множество R действительных чисел, исключая число 2 (если х = 2, то знаменатель данной дроби обращается в нуль).
Числовые функции можно представлять наглядно на координатной плоскости. Пусть у = f (х) - функция с областью определения X. Тогда ее графиком является множество таких точек координатной плоскости, которые имеют абсциссу х и ординату f (х) для всех х из множества X. Так, графиком функции у = 2 х - 3, заданной на множестве R, является прямая (рис. 82), а графиком функции у = х2, заданной также на множестве R - парабола (рис. 83).
Рис. 83
Функции можно задавать при помощи графика. Например, графики, приведенные на рисунке 84, задают функции, одна из которых имеет в качестве области определения промежуток [-2, 3], а вторая конечное множество {-2, -1,0, 1,2,3}.
Функции можно задавать при помощи таблицы. Например, таблица, приведенная ниже, описывает зависимость температуры воздуха от времени суток. Эта зависимость - функция, так как каждому значению времени t соответствует единственное значение температуры воздуха р:
Числовые функции обладают многими свойствами. Мы рассмотрим одно из них - свойство монотонности, так как понимание этого свойства учителем важно при обучении математике младших школьников. Определение. Функция f (х) называется монотонной на некотором промежутке А, если она на этом промежутке возрастает или убывает. Определение. Функция f (х) называется возрастающей на некотором промежутке А, если для любых чисел х1, х2 из множества А выполняется условие: х1 < х2 ð f (х1)< f (х2) График функции, возрастающей на промежутке А, обладает особенностью: при движении вдоль оси абсцисс слева направо по промежутку А ординаты точек графика увеличиваются (рис. 86). Определение. Функция f называется убывающей на некотором промежутке А, если для любых чисел х1, х2 из множества А выполняется условие: х1 < х2 ð f (х1)> f (х2) График функции, убывающей на промежутке А, обладает особенностью: при движении вдоль оси абсцисс слева направо по промежутку А ординаты точек графика уменьшаются (рис. 87).
Дата добавления: 2014-01-06; Просмотров: 1622; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |